全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

UPPC梁的开裂截面惯性矩及挠度计算研究

DOI: 10.6052/j.issn.1000-4750.2012.10.0728, PP. 170-176

Keywords: 预应力混凝土,无粘结筋,,开裂截面惯性矩,挠度

Full-Text   Cite this paper   Add to My Lib

Abstract:

为满足无粘结部分预应力混凝土(UPPC)梁正常使用极限状态的设计要求,必须合理估算使用荷载下构件的挠度。由于预应力筋与其周围混凝土没有粘结,加之部分预应力混凝土梁的中性轴随外荷载而动,开裂截面形心轴及开裂截面惯性矩也跟着变,这给UPPC梁的挠度计算带来了困难。该文建立了一个UPPC梁的开裂截面惯性矩计算方法,在此基础上,可以按Branson方法很容易地计算出截面有效惯性矩。该有效惯性矩与按《混凝土设计规范》(GB50010-2010)方法所得的有效惯性矩较接近,前者与后者之比在0.89~1.10。计算挠度与3个不同研究者的试验对比表明所建立方法是正确的并具有较广泛的适用性,可用于无粘结预应力筋为纤维复合材料的混凝土梁,而目前的混凝土结构设计规范方法则无法应用于此类构件。

References

[1]  Du J S, Au F T K. Estimation of ultimate stress in external FRP tendons [J]. Structures and Buildings, ICE, 2009, 162(4): 213―220.
[2]  Zhang N, Fu C C, Che H M. Experiment and numerical modeling of prestressed concrete curved slab with spatial unbonded tendons [J]. Engineering Structures, 2011, 33(3): 747―756.
[3]  He Z Q, Liu Z. Stresses in external and internal unbonded tendons: Unified methodology and design equations [J]. Journal of Structural Engineering, ASCE, 2010, 136(9): 1055―1065.
[4]  Vu N A, Castel A, Francois R. Response of post-tensioned concrete beams with unbonded tendons including serviceability and ultimate state [J]. Engineering Structures, 2010, 32(2): 556―569.
[5]  Branson D E, Trost H. Unified procedures for predicting the deflection and centroidal axis location of partially cracked non-prestressed and prestressed concrete members [J]. ACI Journal, 1982, 79(2): 119―130.
[6]  Shaikh A F, Branson D E. Nontensioned steel in prestressed concrete beams [J]. PCI Journal, 1970, 15(1): 14―36.
[7]  Rao S V K M, Dilger W H. Evaluation of short-term deflections of partially prestressed concrete members [J]. ACI Structural Journal, 1992, 89(1): 71―78.
[8]  Tadros M K, Ghali A, Meyer A W. Prestress loss and deflection of precast concrete members [J]. PCI Journal, 1985, 30(1): 114―141.
[9]  Scholz H. Simple deflection and cracking rules for partially prestressed members [J]. ACI Structural Journal, 1991, 88(2): 199―203.
[10]  Naaman A E, Alkhairi F M. Stress at ultimate in unbonded post-tensioned tendons: Part 2 - proposed methodology [J]. ACI Structural Journal, 1991, 88(6): 683―692.
[11]  Harajli M H, Kanj M Y. Service load behavior of concrete members prestressed with unbonded tendons [J]. Journal of Structure Engineering, ASCE, 1992, 118(9): 2569―2589.
[12]  Au F T K, Du J S, Cheung Y K. Service load analysis of unbonded partially prestressed concrete members [J]. Magazine Concrete Research, 2005, 57(4): 199―209.
[13]  Pannell F N. The ultimate moment of resistance of unbonded prestressed concrete beams [J]. Magazine of Concrete Research, 1969, 21(66): 43―54.
[14]  ACI 318-08, Building code requirements for structural concrete and commentary [S]. ACI Committee 318, Farmington Hills, Miami: American Concrete Institute, 2008.
[15]  Du G C, Tao X K. Ultimate stress of unbonded tendons in partially prestressed concrete beams [J]. PCI Journal, 1985, 30(6): 72―91.
[16]  Du J S, Yang D, Ng P L, et al. Response of concrete beams partially prestressed with external unbonded carbon fiber-reinforced polymer tendons [J]. Advanced Materials Research, 2011, 150(1): 344―349.
[17]  Ghallab A, Beeby A W. Deflection of prestressed concrete beams externally strengthened using parafil ropes [J]. Magazine of Concrete Research, 2003, 55(1): 1―17.
[18]  GB 50010-2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.
[19]  GB 50010-2010, Code for design of concrete structures [S]. Beijing: China Architecture and Building Press, 2010. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133