全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

基于概率性人行荷载模型的楼板结构振动分析

DOI: 10.6052/j.issn.1000-4750.2012.04.0300, PP. 81-87

Keywords: 楼板振动,舒适性,人行激励,冲击动力测试,步态参数,响应分布

Full-Text   Cite this paper   Add to My Lib

Abstract:

为评估实际楼板结构在可能承受的人行荷载作用下的振动性能,运用动力测试和数值模拟相结合的方法对某实际楼板结构进行了动力特性及人行激励下的概率性响应分析。首先利用基于频响函数的冲击动力测试,识别了楼板结构实际的模态参数。然后考虑各行人个体产生激励的差异性及随机的人行路径等因素,构建了不同随机步态参数组合的单人及人群多分量荷载模型;基于动力测试所得的模态特性,分别计算了在所构建的概率性荷载作用下的多模态响应;对得到的大量响应样本统计分析得到了单人及人群行走荷载下的响应分布以及某一振动水平发生的概率;结果表明人致振动响应服从近似的正态分布,行人随机性的步态参数中步频对响应的分布起控制作用,此外得到的响应分布特性可对实际楼板结构的人致振动进行概率性的评估。在人群荷载响应计算时,对测得的人活动加速度响应进行自由衰减响应分析得到不同加速度水平时结构基本模态特性的变化,结果表明频率随振动加速度幅值的变化相对较小,而阻尼的变化相对较明显。该文研究可为类似工程的人致振动概率性评估提供参考。

References

[1]  Murray T M, Allen D E, Ungar E E. Design guide 11: Floor vibrations due to human activity [S]. Chicago: American Institute of Steel Construction, 2003.
[2]  Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and hilbert spectrum for nonlinear and nonstationary time series analysis [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903―995.
[3]  韩建平, 李林, 王洪涛, 等. 基于Hilbert-Huang变换和随机减量技术的模态参数识别[J]. 世界地震工程, 2011, 27(1): 72―77.
[4]  Han Jianping, Li Lin, Wang Hongtao, et al. Modal parameter identification based on Hilbert-Huang transform and random decrement technique [J]. World Earthquake Engineering, 2011, 27(1): 72―77. (in Chinese)
[5]  克拉夫 R, 彭津 J. 结构动力学[M]. 第 2 版. 王光远, 译. 北京: 高等教育出版社, 2006.
[6]  Clough R, Penzien J. Dynamics of structures [M]. 2nd ed. Translated by Wang Guangyuan. Beijing: Higher Education Press, 2006. (in Chinese)
[7]  Pavic A, Reynolds P, Waldron P, et al. Critical review of guidelines for checking vibration serviceability of post-tensioned concrete floors [J]. Cement and Concrete Composites, 2001, 23(1): 21―31.
[8]  宋志刚, 金伟良. 行走激励下大跨度楼板振动的最大加速度响应谱方法[J]. 建筑结构学报, 2004, 25(2): 57―63, 98.
[9]  Song Zhigang, Jin Weiliang. Peak acceleration response spectrum of long span floor vibration by pedestrian excitation [J]. Journal of Building Structures, 2004, 25(2): 57―63, 98. (in Chinese)
[10]  何浩祥, 闫维明, 张爱林, 等. 竖向环境振动下人与结构相互作用及舒适度研究[J]. 振动工程学报, 2008, 21(5): 446―451.
[11]  He Haoxiang, Yan Weiming, Zhang Ailin, et al. Human-structure dynamic interaction and comfort evaluation in vertical ambient vibration [J]. Journal of Vibration Engineering, 2008, 21(5): 446―451. (in Chinese)
[12]  Živanović S, Pavic A. Quantification of dynamic excitation potential of pedestrian population crossing footbridges [J]. Shock and Vibration, 2011, 18(4): 563―577.
[13]  Kerr S C. Human induced loading on staircases [D]. London: University College London, 1998.
[14]  Živanović S, Pavic A, Reynolds P. Probability-based prediction of multi-mode vibration response to walking excitation [J]. Engineering Structures, 2007, 29(6): 942―954.
[15]  Racic V, Pavic A, Brownjohn J M W. Experimental identification and analytical modeling of human walking forces: Literature review [J]. Journal of Sound and Vibration, 2009, 326 (1/2): 1―49.
[16]  El-Dardiry E, Wahyuni E, Ji T, et al. Improving FE models of a long-span flat concrete floor using natural frequency measurements [J]. Computers and Structures, 2002, 80(27/28/29/30): 2145―2156.
[17]  Ewins D J. Modal testing: Theory, practice and application [M]. Taunton, Somerset, England: Research Studies Press and John Wiley, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133