全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

膜结构分析理论研究现状与展望

DOI: 10.6052/j.issn.1000-4750.2013.05.ST03, PP. 1-14

Keywords: 膜结构,形态分析,多目标优化,褶皱分析,流固耦合

Full-Text   Cite this paper   Add to My Lib

Abstract:

作为一种典型的柔性张力体系,膜结构的分析方法与刚性结构相比有许多不同之处,形成一套独特的理论体系。首先阐述了膜结构分析理论的特点和一些需要特殊考虑的问题,然后从初始形态分析、荷载效应分析和裁剪分析三个方面概要介绍了膜结构分析理论的发展过程,以及一些具有代表性的方法;继而针对膜结构分析中的若干热点问题,包括褶皱的数值模拟、考虑多目标的形态优化、基于裁剪-找形一体化思想的精确成形技术和考虑流固耦合的风振分析方法等的研究现状进行了评述,最后对膜结构分析理论的进一步发展提出展望。

References

[1]  沈世钊. 膜结构—发展迅速的新型空间结构[J]. 哈尔滨建筑大学学报, 1999, 32(2): 11―15.
[2]  Shen Shizhao. Membrane structure - an innovative spatial structure with bright prospect [J]. Journal of Harbin University of C. E. & Architecture, 1999, 32(2): 11―15. (in Chinese)
[3]  Linkwitz K, Schek H J. Einige bemerkungen zur berechnung von vorgespannten seilnetz - konstruktionen [J]. Ingenieur-Archiv, 1971, 40: 145―158.
[4]  Schek H J. The force density method for form finding and computations of general networks [J]. Computer Methods Applying Mechanics Engineering, 1974, 12(3): 115―134.
[5]  Grundig L. Minimal surface for finding forms of structural membrane [J]. Computers & Structures, 1988, 30(3): 679―683.
[6]  叶小兵, 李中立, 吴健生. 用曲面有限单元建立的膜结构分析理论[J]. 建筑结构学报, 1998, 19(5): 17―21.
[7]  伞冰冰, 武岳, 沈世钊. 膜结构的曲面单元有限元分析[J]. 哈尔滨工业大学学报, 2005, 37(增刊): 108―111.
[8]  Ishii K. On developing of curved surfaces of pneumatic structures [C]. IASS Symposium on Pneumatic Structures, Delft, 1972.
[9]  张其林, 张莉, 罗晓群. 任意空间曲面近似展开成平面的增量有限元法[J]. 计算力学学报, 2001, 18(4): 498―500.
[10]  卫东, 沈世钊. 薄膜结构裁剪分析新方法[J]. 建筑结构, 2002, 32(7): 70―72.
[11]  毛国, 孙炳楠, 徐浩祥. 基于弹簧-质点系统的薄膜结构曲面展开算法[J]. 浙江大学学报, 2005, 39(8): 1238―1242.
[12]  Ohsaki M, Uetani K. Shape-stress trade-off design of membrane structures for specified sequence of boundary shapes [J]. Computer Methods Applying Mechanics Engineering, 2000, 182(1/2): 73―88.
[13]  Miller R K, Hedgepeth J M. An algorithm for finite element analysis of partly wrinkled membranes [J]. AIAA Journal, 1982, 20(12): 1761―1763.
[14]  Liu X, Jenkins C H, Schur W. Fine scale analysis of wrinkled membranes [J]. International Journal of Computational Engineering Science, 2000, 1(2): 1027―1038.
[15]  Nakashino K, Natori M C. Efficient modification scheme of stress-strain tensor for wrinkled membranes [J]. AIAA Journal, 2005, 43(1): 206―215.
[16]  Woo K, Jenkins C H. Global/local analysis strategy for partly wrinkled membrane [J]. Journal of Spacecraft and Rockets, 2006, 43(5): 1101―1106.
[17]  Shaw A, Roy D. Analyses of wrinkled and slack membranes through an error reproducing mesh-free method [J]. International Journal of Solids and Structures, 2007, 44(11/12): 3939―3972.
[18]  Akita T, Natori M C. Sensitivity analysis method for membrane wrinkling based on the tension-field theory [J]. AIAA Journal, 2008, 46(6): 1516―1527.
[19]  Wang C G, Du X W, Tan H F, et al. A new computational method for wrinkling analysis of gossamer space structures [J]. International Journal of Solids and Structures, 2009, 46(6): 1516―1526.
[20]  Tomita Y, Shindo A. Onset and growth of wrinkles in thin square plates subjected to diagonal tension [J]. International Journal of Mechanical Sciences, 1988, 30(12): 921―931.
[21]  Miyamura T. Wrinkling on stretched circular membranes under in plane torsion: Comparison between bifurcation analyses and experiments [J]. Engineering Structures, 2000, 20(11): 1407―1425.
[22]  Su X F, Frank A, Barmac T, Joseph R B. Wrinkling analysis of a kapton square membrane under tensile loading [R]. Proceedings of the 44th AIAA/ASME/ ASCE/AHS Structures, Structural Dynamics and Materials Conference, Virginia, 2003.
[23]  Wong Y W, Pellegrino S. Wrinkled membranes III: Numerical simulations [J]. Journal of Mechanics of Materials and Structures, 2006, 1(1): 63―95
[24]  Wong Y W, Pelleqrino S. Computation of wrinkle amplitudes in thin membranes [C]. Proceedings of the 43th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, Denver, 2002.
[25]  Leifer J, Belvin W K. Prediction of wrinkle amplitudes in thin film membranes using finite element modeling [C]. Norfolk, VA, United states: American Inst. Aeronautics and Astronautics Inc., 2003.
[26]  Papa A, Pellegrino S. Mechanics of systematically creased thin-film membrane structures [C]. Austin, TX, United states: American Inst. Aeronautics and Astronautics Inc., 2005.
[27]  Tessler A, Sleight D W, Wang J T. Effective modeling and nonlinear shell analysis of thin membranes exhibiting structural wrinkling [J]. Journal of Spacecraft and Rockets, 2005, 42(2): 287―298.
[28]  全亮, 武岳. 基于薄壳理论的膜结构褶皱分析[J]. 工业建筑, 2008, 38(增刊): 118―120.
[29]  伞冰冰, 武岳, 卫东, 沈世钊. 膜结构的多目标形态优化[J]. 土木工程学报, 2008, 41(9): 1―7.
[30]  Sindel F, Nouri-Baranger T, Trompette P. Including optimization in conception of fabric structures [J]. Computers and Structure, 2001, 79(26/27/28): 2451―2459.
[31]  钱基宏, 宋涛. 张拉膜结构的找形分析与形态优化研究[J]. 建筑结构学报, 2002, 23(3): 84―88.
[32]  冯星. 张力膜结构形状优化[J]. 建筑科学, 1999, 15(4): 24―27.
[33]  翁雁麟, 关富玲, 徐彦, 王小丽. 充气膜结构的优化设计[J]. 科技通报, 2006, 22(4): 535―548.
[34]  Glück M, Breuer M, Durst F, Halfmann A, Rank E. Computation of wind-induced vibrations of flexible shells and membranous structures [J]. Journal of Fluids and Structures, 2003, (17): 739―765.
[35]  Wu Y, Sun X Y, Shen S Z. Computation of wind structure interaction on tension structures [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11): 2019―2032.
[36]  武岳, 孙晓颖, 沈世钊. 单向悬挂屋盖结构的风致气弹耦合效应数值模拟[J]. 计算力学学报, 2007, 24(5): 571―578.
[37]  刘振华. 膜结构流体-结构耦合作用风致动力响应数值模拟研究[D]. 上海: 同济大学, 2006.
[38]  孙晓颖. 薄膜结构风振响应中的流固耦合效应研究[D]. 哈尔滨: 哈尔滨工业, 2007.
[39]  Michalski A, Kermel P D, Haug E, Lohner R, Wüchner R, Bletzinger K U. Validation of the computational ?uid-structure interaction simulation at real-scale tests of a ?exible 29 m umbrella in natural wind ?ow [J]. J. Wind Eng. Ind. Aerodyn., 2011, 99(4): 400―413.
[40]  孙晓颖, 武岳, 沈世钊. 薄膜结构流固耦合效应的简化数值模拟方法[J]. 土木工程学报, 2010, 43(10): 30―35.
[41]  陈波, 武岳, 沈世钊. 张拉式膜结构抗风设计[J]. 工程力学, 2006, 23(7): 65―71.
[42]  杨庆山, 姜忆南. 张拉索-膜结构分析与设计[M]. 北京: 科学出版社, 2004: 16―20.
[43]  Yang Qingshan, Jiang Yinan. Analysis and design of tensioned cable-membrane structures [M]. Beijing: Science Press, 2004: 16―20. (in Chinese)
[44]  Otto F. Tensile structures [M]. Cambridge: MIT Press, 1967: 52―96.
[45]  Maurin B, Motro R. Surface stress density method as a form-finding tool for tensile membranes [J]. Engineering Structures, 1998, 20(8): 712―719.
[46]  Ye J H, Feng R Q, Zhou L S, Tian J. The modified force-density method for form-finding of membrane structures [J]. International Journal of Steel Structures, 2012, 12(3): 299―310.
[47]  王勇, 魏德敏, 高振宇. 张拉膜结构力密度法混合找形分析[J]. 计算力学学报, 2005, 22(5): 629―632.
[48]  Wang Yong, Wei Demin, Gao Zhenyu. Mixed form-finding analysis of tension membrane structures [J]. Chinese Journal of Computational Mechanics, 2005, 22(5): 629―632. (in Chinese)
[49]  Day A S. An introduction to dynamic relaxation [J]. The Engineer, 1965, 29(1): 218―221.
[50]  Topping B H V. The application of dynamic relaxation to the design of modular space structures [D]. London: The City University, 1978.
[51]  Wakefield D S. Pretension networks supported by compression arches [D]. London: The City University, 1980.
[52]  Lewis W J, Jones M S. Dynamic relaxation analysis of the non-linear static response of pretensioned cable roofs [J]. Computers & Structures, 1984, 18(6): 989―997.
[53]  Barnes M R. Form-finding and analysis of prestressed nets and membranes [J]. Computers & Structures, 1988, 30(3): 685―695.
[54]  毛国栋, 孙炳楠, 唐志山. 控制网格变形的动力松弛法膜结构找形分析[J]. 浙江大学学报, 2004, 38(5): 598―602.
[55]  Mao Guodong, Sun Bingnan, Tang Zhishan. Form- finding of membrane structures by dynamic relaxation controlling mesh distortion [J]. Journal of Zhejiang University, 2004, 38(5): 598―602. (in Chinese)
[56]  张华, 单建. 预应力索膜结构的DR法找形分析[J]. 工程力学, 2002, 19(2): 41―44.
[57]  Zhang Hua, Shan Jian. Form-finding of prestressed cable and membrane structures by dynamic relaxation [J]. Engineering Mechanics, 2002, 19(2): 41―44. (in Chinese)
[58]  Wood R D. A simple technique for controlling element distortion in dynamic relaxation form-finding of tension membranes [J]. Computers & Structures, 2002, 36(12): 2115―2120.
[59]  叶继红, 周树路. 改进动力松弛法在膜结构找形中的应用[J]. 工程力学, 2008, 25(12): 194―201.
[60]  Ye Jihong, Zhou Shulu. The modified dynamic relaxation method for form-finding of membrane structures [J]. Engineering Mechanics, 2008, 25(12): 194―201. (in Chinese)
[61]  Haug E, Powell G H. Finite element analysis of nonlinear membrane structure [C]. IASS-Pacific Symposium, partⅡ. On Tension Structures and Space Frames. Tokyo and Kyoto, 1970: 83―92.
[62]  Argyris J H, Balme H, Kleiber M, Hindenlang U. Nature description of large inelastic deformations for shells or arbitrary shape - application of trump element [J]. Computer Methods Applying Mechanics Engineering, 1980, 22(3): 1361―1389.
[63]  Nishimura T, Tosaka N, Honma T. Membrane structure analysis using the finite element technique [C]. IASS Symposium, Osaka, 1986: 9―16.
[64]  张琴, 曹国辉. 膜结构找形分析中的二次节点平衡法策略[J]. 广东土木与建筑, 2008, (11): 20―22.
[65]  Zhang Qin, Cao Guohui. Secondary node balance method strategy in form-finding analysis of membrane structures [J]. Guangdong Architecture Civil Engineering, 2008, (11): 20―22. (in Chinese)
[66]  李辉, 刘振华, 冯维明. 控制网格变形的膜结构找形新方法[J]. 工业建筑, 2007, 37(增刊): 733―736.
[67]  Li Hu, Liu Zhenhua, Feng Weiming. A new method for form-finding of membrane structures by controlling mesh distortion [J]. Industrial Construction, 2007, 37(Suppl): 733―736. (in Chinese)
[68]  卫东, 沈世钊. 薄膜结构初始形态确定的几种分析方法研究[J]. 哈尔滨建筑大学学报, 2000, 33(4): 16―20.
[69]  Wei Dong, Shen Shizhao. A research on form-finding methods of membrane structure [J]. Journal of Harbin University of C. E. & Architecture, 2000, 33(4): 16―20. (in Chinese)
[70]  聂世华, 钱若军, 王人鹏, 等. 膜结构的找形分析和裁剪分析评述[J]. 空间结构, 1999, 5(3): 12―18.
[71]  Nie Shihua, Qian Ruojun, Wang Renpeng, et al. An introduction to form-finding and cutting pattern methods of membrane structure [J]. Spatial Structure, 1999, 5(3): 12―18. (in Chinese)
[72]  刘英贤, 黄呈伟. 膜结构分析方法的应用与展望[J]. 山西建筑, 2006, 32(1): 1―2.
[73]  Brew J S, Lewis W J. Computational form-finding of tension membrane structures - Non-finite element approaches: Part 1. Use of cubic splines in finding minimal surface membranes [J]. International Journal for Numerical Methods in Engineering, 2003, 56(5): 651―668.
[74]  张其林, 张莉. 膜结构形状确定的三类问题及其求解[J]. 建筑结构学报, 2000, 21(5): 33―40.
[75]  Fujikake M, Kojima O, Fukushima S. Analysis of fabric tension structures [J]. Computers & Structures, 1989, 32(3/4): 537―547.
[76]  Tabarrok B, Qin Z. Nonlinear analysis of tension structures [J]. Computers & Structures, 1992, 45(5/6): 973―984.
[77]  伞冰冰, 武岳, 沈世钊. 膜结构有限元分析中的平面单元与曲面单元的比较[J]. 工程力学, 2008, 25(2): 168―173.
[78]  San Bingbing, Wu Yue, Shen Shizhao. Comparison between plane and curved elements for the analysis of membrane structures by finite element method [J]. Engineering Mechanics, 2008, 25(2): 168―173. (in Chinese)
[79]  Li C T, Leonard J W. Finite element analysis of inflatable shells [J]. Journal of the Engineering Mechanics Division, 1973, 99(3): 495―514.
[80]  Gosling P D, Lewis W J. Optimal structural membranes—I. Form-finding of prestressed membranes using a curved quadrilateral finite element for surface definition [J]. Computers and Structures, 1996, 61(5): 871―883.
[81]  Gosling P D, Lewis W J. Optimal structural membranes—II. Form-finding of prestressed membranes using a curved quadrilateral finite element for surface definition [J]. Computers and Structures, 1996, 61(5): 885―895.
[82]  Kneen P. Design of membrane structures [D]. University of New South Wales, 1996.
[83]  Meek J L, Tan K Y. Post-shape finding determination of geodesic lines in cutting pattern design for membrane structures [J]. International Journal of Space Structure, 1986, 87(2): 231―239.
[84]  向阳, 沈世钊. 薄膜结构的实用裁剪设计方法[J]. 空间结构, 1999, 5(2): 46―50.
[85]  赵杰, 谭锋, 杨庆山. 膜结构裁剪膜片展开的二次测地线法[J]. 空间结构, 2003, 9(2): 56―60.
[86]  Xia X Y, Meek J L. Computer cutting pattern generation of membrane structures [J]. Interactional Journal of Space Structures, 2000, 15(2): 95―110.
[87]  钱基宏, 宋涛. 膜结构裁剪分析中具有边界约束条件的膜曲面弹性展平最小变形能原理[J]. 建筑结构学报, 2001, 22(4): 17―19.
[88]  马明, 钱基宏, 蓝天. 膜结构裁剪分析中考虑预张力释放的计算方法[J]. 建筑结构学报, 2002, 23(6): 75―78.
[89]  乔磊. 大尺度复杂张拉薄膜结构整体分析理论及其软件化[D]. 北京: 北京交通大学, 2011.
[90]  杜星文, 王长国, 万志敏. 空间薄膜结构的褶皱研究进展[J]. 力学进展, 2006, 36(2): 187―199.
[91]  Wagner H. Flat sheet metal girders with a very thin metal web [J]. Aeitschrift fur Flugtechnik und Motorluftschiffahrt, 1929, 20(4): 200―314.
[92]  Stein M, Hedgepeth J M. Analysis of partly wrinkled membranes [R]. Washington, D. C: NASA, 1961.
[93]  Adler A L. Finite element approaches for static and dynamic analysis of partially wrinkled membrane structures [D]. Colorado: University of Colorado at Boulder, 2000.
[94]  Johnston J D. Finite element analysis of wrinkled membrane structures for sunshield applications [C]. Denver, CO, United states: American Inst. Aeronautics and Astronautics Inc., 2002.
[95]  Ding H, Yang B. The modeling and numerical analysis of wrinkled membranes [J]. Int. Journal for Numerical Methods in Engineering, 2003, 58(12): 1785―1801.
[96]  Pipkin A C. The relaxed energy density for isotropic elastic membranes [J]. IMA Journal of Applied Mathematics, 1986, 36(1): 85―99.
[97]  Jenkins C H, Leonard J W. Nonlinear dynamic response of membranes: state of the art [J]. Applied Mechanics Reviews, 1991, 44(7): 319―328.
[98]  伞冰冰. 膜结构的精细化分析、多目标形态优化与精确成形[D]. 哈尔滨: 哈尔滨工业大学, 2010.
[99]  谭锋, 杨庆山, 李作为. 薄膜结构分析中的褶皱判别准则及其分析方法[J]. 北京交通大学学报, 2004, 30(1): 35―39.
[100]  Roddeman D G, Drukker J, Oomens C W J, et al. The wrinkling of thin membranes: Part I-Theory [J]. Journal of Applied Mechanics, 1987, 54(4): 883―887.
[101]  Roddeman D G, Drukker J, Oomens C W J, et al. The wrinkling of thin membranes: Part II—Numerical analysis [J]. Journal of Applied Mechanics, 1987, 54(4): 888―892.
[102]  张建, 杨庆山, 谭锋. 基于薄壳单元的薄膜结构褶皱分析[J]. 工程力学, 2010, 27(8): 28―34, 39.
[103]  唐喜. 基于ANSYS参数化语言的索膜结构找形优化和荷载分析[D]. 南京: 河海大学, 2005.
[104]  Uetani K, Fujii E, Ohsaki M, Fujiwara J. Initial stress field determination of membranes using optimization technique [J]. International Journal of Space Structures, 2000, 15(2): 137―143.
[105]  毛丽娜. 充气膜结构反射面的形态分析与优化方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
[106]  卫东, 沈世钊. 张拉薄膜结构的形态优化设计[J]. 土木工程学报, 2004, 37(2): 12―18.
[107]  李海蛟, 伞冰冰, 武岳. 脊谷式膜结构的形态优化分析[J]. 空间结构, 2010, 16(1): 51―56.
[108]  San B B, Sun X Y, Wu Y. Multi-objective optimization of membrane structures based on Pareto Genetic Algorithm [J]. Journal of Harbin Institute of Technology (New Series), 2010, 17(5): 622―630.
[109]  Bletzinger K U, Linhard J, Wüchner R. Extended and integrated numerical form finding and patterning of membrane structures [J]. Journal of the International Association for Shell and Spatial Structures, 2009, 50(1): 35―49.
[110]  胥传喜. 张力膜结构的全过程集成分析及其策略研究[J]. 空间结构, 1998, 4(4): 34―38.
[111]  顾东生, 吕令毅, 宋启根, 等. 膜结构一体化分析方法[J]. 建筑技术开发, 2003, 30(1): 15―17.
[112]  严慧, 吕子正, 韦国岐. 膜结构的风损事故及防范[J]. 建筑结构, 2008, 38(7): 113―116.
[113]  杨庆山. 薄膜结构的风致动力效应初探[J]. 空间结构, 2002, 8(4): 3―10.
[114]  沈世钊, 武岳. 膜结构风振响应中的流固耦合效应研究进展[J]. 建筑科学与工程学报, 2006, 23(1): 1―9.
[115]  Minami H, Okuda Y, Kawamura S. An approximate analysis on fluttering of membrane in uniform air flow [C]. Int. Symposium of IASS, Italy, 1995: 843―850.
[116]  Kimoto E, Kawamura S. Aerodynamic behavior of one-way type hanging roofs [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 13(1/2/3): 395―405.
[117]  Miyake A, Yoshimura T, Makino M. Aerodynamic instability of suspended roof modals [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 42(1/2/3): 1471―1482.
[118]  Vitale A M, Letchford C M. Experimental study of wind effects on flat porous fabric roofs [C]. Wind Engineering into the 21st Century. Larsen, Larose & Livesey, Rotterdam, 1999: 1545―1551.
[119]  Uematsu Y, Uchiyama K. Aeroelastic behavior of an H.P. shaped suspended roof [J]. Shells, Membrane and Space Frames, Proceedings of IASS Symposium, Osaka, 1986, 2: 241―248.
[120]  Kawai H, Yoshie R. Wind-induced response of a large cantilevered roof [J]. J. Wind Eng. Ind. Aerodyn., 1999, 83(1/2/3): 263―275.
[121]  武岳, 杨庆山, 沈世钊. 索膜结构风振气弹效应的风洞实验研究[J]. 工程力学, 2008, 25(1): 8―15.
[122]  Yang Q S, Liu R X. On aerodynamic stability of membrane structures [J]. International Journal of Space Structures, 2005, 20(3): 181―188.
[123]  Hubner B, Walhorn E, Dinkler D. Simultaneous solution to the interaction of wind flow and lightweight membrane structures [C]. Proc. Int. Conf. on Lightweight Structures in Civil Engineering, Warsaw, 2002: 519―523.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133