Shen Shizhao. Membrane structure - an innovative spatial structure with bright prospect [J]. Journal of Harbin University of C. E. & Architecture, 1999, 32(2): 11―15. (in Chinese)
[3]
Linkwitz K, Schek H J. Einige bemerkungen zur berechnung von vorgespannten seilnetz - konstruktionen [J]. Ingenieur-Archiv, 1971, 40: 145―158.
[4]
Schek H J. The force density method for form finding and computations of general networks [J]. Computer Methods Applying Mechanics Engineering, 1974, 12(3): 115―134.
[5]
Grundig L. Minimal surface for finding forms of structural membrane [J]. Computers & Structures, 1988, 30(3): 679―683.
Ohsaki M, Uetani K. Shape-stress trade-off design of membrane structures for specified sequence of boundary shapes [J]. Computer Methods Applying Mechanics Engineering, 2000, 182(1/2): 73―88.
[13]
Miller R K, Hedgepeth J M. An algorithm for finite element analysis of partly wrinkled membranes [J]. AIAA Journal, 1982, 20(12): 1761―1763.
[14]
Liu X, Jenkins C H, Schur W. Fine scale analysis of wrinkled membranes [J]. International Journal of Computational Engineering Science, 2000, 1(2): 1027―1038.
[15]
Nakashino K, Natori M C. Efficient modification scheme of stress-strain tensor for wrinkled membranes [J]. AIAA Journal, 2005, 43(1): 206―215.
[16]
Woo K, Jenkins C H. Global/local analysis strategy for partly wrinkled membrane [J]. Journal of Spacecraft and Rockets, 2006, 43(5): 1101―1106.
[17]
Shaw A, Roy D. Analyses of wrinkled and slack membranes through an error reproducing mesh-free method [J]. International Journal of Solids and Structures, 2007, 44(11/12): 3939―3972.
[18]
Akita T, Natori M C. Sensitivity analysis method for membrane wrinkling based on the tension-field theory [J]. AIAA Journal, 2008, 46(6): 1516―1527.
[19]
Wang C G, Du X W, Tan H F, et al. A new computational method for wrinkling analysis of gossamer space structures [J]. International Journal of Solids and Structures, 2009, 46(6): 1516―1526.
[20]
Tomita Y, Shindo A. Onset and growth of wrinkles in thin square plates subjected to diagonal tension [J]. International Journal of Mechanical Sciences, 1988, 30(12): 921―931.
[21]
Miyamura T. Wrinkling on stretched circular membranes under in plane torsion: Comparison between bifurcation analyses and experiments [J]. Engineering Structures, 2000, 20(11): 1407―1425.
[22]
Su X F, Frank A, Barmac T, Joseph R B. Wrinkling analysis of a kapton square membrane under tensile loading [R]. Proceedings of the 44th AIAA/ASME/ ASCE/AHS Structures, Structural Dynamics and Materials Conference, Virginia, 2003.
[23]
Wong Y W, Pellegrino S. Wrinkled membranes III: Numerical simulations [J]. Journal of Mechanics of Materials and Structures, 2006, 1(1): 63―95
[24]
Wong Y W, Pelleqrino S. Computation of wrinkle amplitudes in thin membranes [C]. Proceedings of the 43th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, Denver, 2002.
[25]
Leifer J, Belvin W K. Prediction of wrinkle amplitudes in thin film membranes using finite element modeling [C]. Norfolk, VA, United states: American Inst. Aeronautics and Astronautics Inc., 2003.
[26]
Papa A, Pellegrino S. Mechanics of systematically creased thin-film membrane structures [C]. Austin, TX, United states: American Inst. Aeronautics and Astronautics Inc., 2005.
[27]
Tessler A, Sleight D W, Wang J T. Effective modeling and nonlinear shell analysis of thin membranes exhibiting structural wrinkling [J]. Journal of Spacecraft and Rockets, 2005, 42(2): 287―298.
Sindel F, Nouri-Baranger T, Trompette P. Including optimization in conception of fabric structures [J]. Computers and Structure, 2001, 79(26/27/28): 2451―2459.
Glück M, Breuer M, Durst F, Halfmann A, Rank E. Computation of wind-induced vibrations of flexible shells and membranous structures [J]. Journal of Fluids and Structures, 2003, (17): 739―765.
[35]
Wu Y, Sun X Y, Shen S Z. Computation of wind structure interaction on tension structures [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11): 2019―2032.
Michalski A, Kermel P D, Haug E, Lohner R, Wüchner R, Bletzinger K U. Validation of the computational ?uid-structure interaction simulation at real-scale tests of a ?exible 29 m umbrella in natural wind ?ow [J]. J. Wind Eng. Ind. Aerodyn., 2011, 99(4): 400―413.
Yang Qingshan, Jiang Yinan. Analysis and design of tensioned cable-membrane structures [M]. Beijing: Science Press, 2004: 16―20. (in Chinese)
[44]
Otto F. Tensile structures [M]. Cambridge: MIT Press, 1967: 52―96.
[45]
Maurin B, Motro R. Surface stress density method as a form-finding tool for tensile membranes [J]. Engineering Structures, 1998, 20(8): 712―719.
[46]
Ye J H, Feng R Q, Zhou L S, Tian J. The modified force-density method for form-finding of membrane structures [J]. International Journal of Steel Structures, 2012, 12(3): 299―310.
Wang Yong, Wei Demin, Gao Zhenyu. Mixed form-finding analysis of tension membrane structures [J]. Chinese Journal of Computational Mechanics, 2005, 22(5): 629―632. (in Chinese)
[49]
Day A S. An introduction to dynamic relaxation [J]. The Engineer, 1965, 29(1): 218―221.
[50]
Topping B H V. The application of dynamic relaxation to the design of modular space structures [D]. London: The City University, 1978.
[51]
Wakefield D S. Pretension networks supported by compression arches [D]. London: The City University, 1980.
[52]
Lewis W J, Jones M S. Dynamic relaxation analysis of the non-linear static response of pretensioned cable roofs [J]. Computers & Structures, 1984, 18(6): 989―997.
[53]
Barnes M R. Form-finding and analysis of prestressed nets and membranes [J]. Computers & Structures, 1988, 30(3): 685―695.
Mao Guodong, Sun Bingnan, Tang Zhishan. Form- finding of membrane structures by dynamic relaxation controlling mesh distortion [J]. Journal of Zhejiang University, 2004, 38(5): 598―602. (in Chinese)
Zhang Hua, Shan Jian. Form-finding of prestressed cable and membrane structures by dynamic relaxation [J]. Engineering Mechanics, 2002, 19(2): 41―44. (in Chinese)
[58]
Wood R D. A simple technique for controlling element distortion in dynamic relaxation form-finding of tension membranes [J]. Computers & Structures, 2002, 36(12): 2115―2120.
Ye Jihong, Zhou Shulu. The modified dynamic relaxation method for form-finding of membrane structures [J]. Engineering Mechanics, 2008, 25(12): 194―201. (in Chinese)
[61]
Haug E, Powell G H. Finite element analysis of nonlinear membrane structure [C]. IASS-Pacific Symposium, partⅡ. On Tension Structures and Space Frames. Tokyo and Kyoto, 1970: 83―92.
[62]
Argyris J H, Balme H, Kleiber M, Hindenlang U. Nature description of large inelastic deformations for shells or arbitrary shape - application of trump element [J]. Computer Methods Applying Mechanics Engineering, 1980, 22(3): 1361―1389.
[63]
Nishimura T, Tosaka N, Honma T. Membrane structure analysis using the finite element technique [C]. IASS Symposium, Osaka, 1986: 9―16.
Li Hu, Liu Zhenhua, Feng Weiming. A new method for form-finding of membrane structures by controlling mesh distortion [J]. Industrial Construction, 2007, 37(Suppl): 733―736. (in Chinese)
Wei Dong, Shen Shizhao. A research on form-finding methods of membrane structure [J]. Journal of Harbin University of C. E. & Architecture, 2000, 33(4): 16―20. (in Chinese)
Nie Shihua, Qian Ruojun, Wang Renpeng, et al. An introduction to form-finding and cutting pattern methods of membrane structure [J]. Spatial Structure, 1999, 5(3): 12―18. (in Chinese)
Brew J S, Lewis W J. Computational form-finding of tension membrane structures - Non-finite element approaches: Part 1. Use of cubic splines in finding minimal surface membranes [J]. International Journal for Numerical Methods in Engineering, 2003, 56(5): 651―668.
San Bingbing, Wu Yue, Shen Shizhao. Comparison between plane and curved elements for the analysis of membrane structures by finite element method [J]. Engineering Mechanics, 2008, 25(2): 168―173. (in Chinese)
[79]
Li C T, Leonard J W. Finite element analysis of inflatable shells [J]. Journal of the Engineering Mechanics Division, 1973, 99(3): 495―514.
[80]
Gosling P D, Lewis W J. Optimal structural membranes—I. Form-finding of prestressed membranes using a curved quadrilateral finite element for surface definition [J]. Computers and Structures, 1996, 61(5): 871―883.
[81]
Gosling P D, Lewis W J. Optimal structural membranes—II. Form-finding of prestressed membranes using a curved quadrilateral finite element for surface definition [J]. Computers and Structures, 1996, 61(5): 885―895.
[82]
Kneen P. Design of membrane structures [D]. University of New South Wales, 1996.
[83]
Meek J L, Tan K Y. Post-shape finding determination of geodesic lines in cutting pattern design for membrane structures [J]. International Journal of Space Structure, 1986, 87(2): 231―239.
Wagner H. Flat sheet metal girders with a very thin metal web [J]. Aeitschrift fur Flugtechnik und Motorluftschiffahrt, 1929, 20(4): 200―314.
[92]
Stein M, Hedgepeth J M. Analysis of partly wrinkled membranes [R]. Washington, D. C: NASA, 1961.
[93]
Adler A L. Finite element approaches for static and dynamic analysis of partially wrinkled membrane structures [D]. Colorado: University of Colorado at Boulder, 2000.
[94]
Johnston J D. Finite element analysis of wrinkled membrane structures for sunshield applications [C]. Denver, CO, United states: American Inst. Aeronautics and Astronautics Inc., 2002.
[95]
Ding H, Yang B. The modeling and numerical analysis of wrinkled membranes [J]. Int. Journal for Numerical Methods in Engineering, 2003, 58(12): 1785―1801.
[96]
Pipkin A C. The relaxed energy density for isotropic elastic membranes [J]. IMA Journal of Applied Mathematics, 1986, 36(1): 85―99.
[97]
Jenkins C H, Leonard J W. Nonlinear dynamic response of membranes: state of the art [J]. Applied Mechanics Reviews, 1991, 44(7): 319―328.
Roddeman D G, Drukker J, Oomens C W J, et al. The wrinkling of thin membranes: Part I-Theory [J]. Journal of Applied Mechanics, 1987, 54(4): 883―887.
[101]
Roddeman D G, Drukker J, Oomens C W J, et al. The wrinkling of thin membranes: Part II—Numerical analysis [J]. Journal of Applied Mechanics, 1987, 54(4): 888―892.
Uetani K, Fujii E, Ohsaki M, Fujiwara J. Initial stress field determination of membranes using optimization technique [J]. International Journal of Space Structures, 2000, 15(2): 137―143.
San B B, Sun X Y, Wu Y. Multi-objective optimization of membrane structures based on Pareto Genetic Algorithm [J]. Journal of Harbin Institute of Technology (New Series), 2010, 17(5): 622―630.
[109]
Bletzinger K U, Linhard J, Wüchner R. Extended and integrated numerical form finding and patterning of membrane structures [J]. Journal of the International Association for Shell and Spatial Structures, 2009, 50(1): 35―49.
Minami H, Okuda Y, Kawamura S. An approximate analysis on fluttering of membrane in uniform air flow [C]. Int. Symposium of IASS, Italy, 1995: 843―850.
[116]
Kimoto E, Kawamura S. Aerodynamic behavior of one-way type hanging roofs [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 13(1/2/3): 395―405.
[117]
Miyake A, Yoshimura T, Makino M. Aerodynamic instability of suspended roof modals [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 42(1/2/3): 1471―1482.
[118]
Vitale A M, Letchford C M. Experimental study of wind effects on flat porous fabric roofs [C]. Wind Engineering into the 21st Century. Larsen, Larose & Livesey, Rotterdam, 1999: 1545―1551.
[119]
Uematsu Y, Uchiyama K. Aeroelastic behavior of an H.P. shaped suspended roof [J]. Shells, Membrane and Space Frames, Proceedings of IASS Symposium, Osaka, 1986, 2: 241―248.
[120]
Kawai H, Yoshie R. Wind-induced response of a large cantilevered roof [J]. J. Wind Eng. Ind. Aerodyn., 1999, 83(1/2/3): 263―275.
Yang Q S, Liu R X. On aerodynamic stability of membrane structures [J]. International Journal of Space Structures, 2005, 20(3): 181―188.
[123]
Hubner B, Walhorn E, Dinkler D. Simultaneous solution to the interaction of wind flow and lightweight membrane structures [C]. Proc. Int. Conf. on Lightweight Structures in Civil Engineering, Warsaw, 2002: 519―523.