全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

基于多层可行方向法液体静压转台优化设计

DOI: 10.6052/j.issn.1000-4750.2012.10.0737, PP. 249-256

Keywords: 液体静压导轨,响应面方法,可行下降方向法,动力学分析,优化设计

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高液体静压转台的动力学性能,该文从N-S方程着手,计算了液体静压油腔处的动压承载力。通过供油压力计算了同位置处的静压承载力,利用动压承载力和静压承载力的相互叠加,计算了液体静压导轨综合承载力,继而推导了油膜刚度的计算公式。在此基础上,建立了以综合承载力和油膜刚度为目标函数,以液体静压转台的振动基频为约束的优化模型,利用响应面方法和分层可行下降方向法对优化模型进行了求解,并对优化后的设计进行了瞬态冲击载荷下加工精度的验证,从而为工程设计提供了理论依据。

References

[1]  叶红玲, 郑小龙, 沈静娴, 等. 液体静压导轨转台轴向振动的动力学建模与分析[J]. 工程力学, 2012, 29(3): 218―225.
[2]  Ye Hongling, Zheng Xiaolong, Shen Jingxian, et al. Dynamic modeling and analysis of axial vibration of the hydrostatic slide turntable [J]. Engineering Mechanics, 2012, 29(3): 218―225. (in Chinese)
[3]  荣涵锐, 国荣. 倾斜油腔液体动静压混合轴承的动态特性分析计算[J]. 哈尔滨工业大学学报, 1994, 26(2): 77―83.
[4]  Rong Hanrui, Guo Rong. Calculation and analysis of dynamic behavior for the hybrid journal bearing with four inclined pockets [J]. Journal of Harbin Institute of Technology, 1994, 26(2): 77―83. (in Chinese)
[5]  Shao J, Zhou L, Li H, et al. Influence of the oil cavity depth on dynamic pressure effect of hydrostatic thrust bearing [C]. Hangzhou, Zhejiang, China: IEEE Computer Society, 2009: 11―14.
[6]  孟心斋, 杨建玺, 孟昭焱. 液体静压支承静态性能新表达式探索[J]. 中国工程科学, 2002, 4(5): 63―66.
[7]  Meng Xinzhai, Yang Jianxi, Meng Zhaoyan. New formulas for the static characteristic of hydrostatic bearing and their application [J]. Engineering Science, 2002, 4(5): 63―66. (in Chinese)
[8]  孙学赟, 罗松保. 液体静压导轨对置油垫承载能力及刚度的优化设计[J]. 航空精密制造, 2005, 41(1): 14―17.
[9]  Sun Xueyun, Luo Songbao. The optimization calculation of load capacity and stiffness for contra-positive hydrostatic pocket of hydrostatic slide [J]. Aviation Precision Manufacturing Technology, 2005, 41(1): 14―17. (in Chinese)
[10]  Bouzidane A, Marcthomas. Equivalent stiffness and damping investigation of a hydrostatic journal bearing [J]. Tribology Transactions, 2007, 50: 257―267.
[11]  Chen D, Fan J, Zhang F. Dynamic and static characteristics of a hydrostatic spindle for machine tools [J]. Journal of Manufacturing Systems, 2012, 31(1): 26―33.
[12]  Osman T A, Dorid M, Safar Z S, et al. Experimental assessment of hydrostatic thrust bearing performance [J]. Tribology International, 1996, 29(3): 233―240.
[13]  Wason K L. Hydrostatic radial bearings for high speed precision machine tool applications [D]. U.S.A: University of Oklahoma, 1992.
[14]  Solmaz E, Babalik F C, Ozturk F. Multicriteria optimization approach for hydrostatic bearing design [J]. Industrial Lubrication and Tribology, 2002, 54(1): 20―25.
[15]  Solmaz E, Ozturk F. Optimisation of hydrostatic journal bearings with parameter variations based on thermodynamic effects [J]. Industrial Lubrication and Tribology, 2006, 58(2): 118―122.
[16]  丁叙生. 有周向回油槽液体静压轴承的优化设计[J]. 机床与液压, 2000, 1(增刊): 75―76.
[17]  Ding Xusheng. Optimum design of the hydrostatic bearing with circumferential return oil chute [J]. Machine Tool & Hydraulics, 2000, 1(Suppl): 75―76. (in Chinese)
[18]  赵明, 黄正东, 陈立平. 重型数控立车工作台静压计算与优化[J]. 中国机械工程, 2008, 19(22): 2742―2747.
[19]  Zhao Ming, Huang Zhengdong, Chen Liping. Hydrostatic pressure calculation and optimization on worktable for heavy duty CNC vertical turning mill [J]. China Mechanical Engineering, 2008, 19(22): 2742―2747. (in Chinese)
[20]  隋允康, 叶红玲, 杜家政. 结构拓扑优化的发展及其模型转化为独立层次的迫切性[J]. 工程力学, 2005, 22(增刊): 107―118.
[21]  Sui Yunkang, Ye Hongling, Du Jiazheng. Development of structural topological optimization and imminency of its model transformation into independent level [J]. Engineering Mechanics, 2005, 22(Suppl): 107―118. (in Chinese)
[22]  许宏洲, 王全凤. Zoutendijk可行方向法可能失效的原因及其对策[J]. 基建优化, 2005, 26(1): 108―110.
[23]  Xu Hongzhou, Wang Quanfeng. A solution for possible invalidation of Zoutendijk method of feasible directions [J]. Optimization of Capital Construction, 2005, 26(1): 108―110. (in Chinese)
[24]  陈昌富, 王贻荪, 邹银生. 边坡可靠性分析分步混合遗传算法[J]. 土木工程学报, 2003, 36(2): 72―77.
[25]  Chen Changfu, Wang Yisun, Zou Yinsheng. Hybrid cenetic algorithm with two stage for slope reliability analysis [J]. China Civil Engineering Journal, 2003, 36(2): 72―77. (in Chinese)
[26]  何光宇, 卢强, 陈雪青. 一种求解非线性优化问题的可行方向法[J]. 清华大学学报, 2004, 44(10): 1310―1312.
[27]  He Guangyu, Lu Qiang, Chen Xueqing. Feasible direction algorithm for solving nonlinear optimization problems [J]. Journal of Tsinghua University, 2004, 44(10): 1310―1312. (in Chinese)
[28]  庞志成, 陈世家. 液体静压动静压轴承[M]. 哈尔滨: 哈尔滨工业大学出版社, 1991, 12: 135―139.
[29]  Pang Zhicheng, Chen Shijia. Hydrostatic and hybrid bearing [M]. Harbin: Harbin Institute of Technology, 1991, 12: 135―139. (in Chinese)
[30]  钱汝鼎. 工程流体力学[M]. 北京航空学院出版社, 1989, 9(1): 103―204.
[31]  Qian Ruding. Engineering fluid mechanics [M]. Published by Beihang University, 1989, 9(1): 103―204. (in Chinese)
[32]  陈燕生. 液体静压支承原理及设计[M]. 国防工业出版社, 1989, 7(1): 25―77.
[33]  Chen Yansheng. Theory and design of hydrostatic bearing [M]. National Defense Industry Press, 1989, 7(1): 25―77. (in Chinese)
[34]  Guo Z, Hirano T, Kirk R G. Application of CFD analysis for rotating machinery - Part I: Hydrodynamic, hydrostatic bearings and squeeze film damper [J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(2): 445―451.
[35]  胡毓达. 实用多目标优化[M]. 上海: 上海科学技术出版社, 1990, 7(1): 12―35.
[36]  Hu Yuda. Practical multi-objective optimization [M]. Shanghai: Shanghai Technological Press, 1990, 7(1): 12―35. (in Chinese)
[37]  张光澄. 非线性最优化计算方法[M]. 北京: 高等教育出版社, 2005: 261―320.
[38]  Zhang Guangcheng. Computational methods for nonlinear optimization [M]. Beijing: Published by High Education Oraganization, 2005: 261―320. (in Chinese)
[39]  卢碧红. 虚拟数控车削加工精度预测系统研究[D]. 大连: 大连交通大学, 2003.
[40]  Lu Bihong. Research on machining accuracy prediction system for virtual NC turning [D]. Dalian: Dalian Jiaotong University, 2003. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133