全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

屈曲约束支撑端部塑性扭转屈曲试验研究

DOI: 10.6052/j.issn.1000-4750.2012.10.0765, PP. 168-172

Keywords: 屈曲约束支撑,低周疲劳试验,塑性屈曲,临界应力,扭转

Full-Text   Cite this paper   Add to My Lib

Abstract:

屈曲约束支撑是一种利用金属屈服滞回耗能的装置,具有性能稳定、制作方便、成本低廉等优点。该文通过三根部分焊接屈曲约束支撑试件的低周疲劳试验,探讨了其核心板端部无约束段扭转屈曲的失效模式,并进一步与理论公式进行对比。试验结果表明:屈曲约束支撑核心板端部无约束段的塑性扭转屈曲会导致屈曲约束支撑失效,需要在设计时特别关注;屈曲约束支撑构件的轴向变形对试件的扭转屈曲失效影响显著,轴向变形越大,塑性屈曲临界应力越低,同时施加的实际轴向应力越大;理论公式能够较好的预测屈曲约束支撑端部无约束屈服段的扭转屈曲失效。

References

[1]  周云. 防屈曲耗能支撑结构设计与应用[M]. 北京: 中国建筑工业出版社, 2007: 6―14.
[2]  Zhou Yun. Design and application of structures with buckling-restrained braces[M]. Beijing: China Building Industry Press, 2007: 6―14. (in Chinese)
[3]  Black C J, Makris N, Aiken I D. Component testing, seismic evaluation and characterization of buckling-restrained braces[J]. Journal of Structural Engineering, ASCE, 2004, 130(6): 880―894.
[4]  郭彦林, 刘建彬, 蔡益燕, 邓科. 结构的耗能减震与防屈曲支撑[J]. 建筑结构, 2005, 35(8): 18―23.
[5]  Guo Yanlin, Liu Jianbin, Cai Yiyan, Deng Ke. Structural energy dissipation and seismic mitigation method and buckling-restrained brace[J]. Building Structure, 2005, 35(8): 18―23. (in Chinese)
[6]  赵俊贤, 吴斌. 防屈曲支撑的工作机理及稳定性设计方法[J]. 地震工程与工程振动, 2009, 29(3): 132―139.
[7]  Zhao Junxian, Wu Bin. Working mechanism and stability design methods of buckling-restrained braces[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(3): 132―139. (in Chinese)
[8]  赵俊贤, 吴斌, 梅洋, 欧进萍. 防屈曲支撑的研究现状及关键理论问题[J]. 防灾减灾工程学报, 2010, 30(增1): 93―100.
[9]  Zhao Junxian, Wu Bin, Mei Yang, Ou Jinping. Research status and key theoretical issues of buckling-restrained braces[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(Suppl 1): 93―100. (in Chinese)
[10]  赵俊贤, 吴斌, 欧进萍. 新型全钢防屈曲支撑的拟静力滞回性能试验[J]. 土木工程学报, 2011, 44(4): 60―70.
[11]  Zhao Junxian, Wu Bin, Ou Jinping. Uniaxial quasi-static cyclic tests on the hysteretic behavior of a novel type of all-steel buckling-restrained brace[J]. China Civil Engineering Journal, 2011, 44(4): 60―70. (in Chinese)
[12]  Usami T, Ge H B, Kasai A. Overall buckling prevention condition of buckling-restrained braces as a structural control damper[C]. Proceedings of the 14th World Conference on Earthquake Engineering. Beijing, China, 2008.
[13]  Lin P C, Tsai K C, Wang K J, et al. Seismic design and hybrid tests of a full-scale three-story buckling-restrained braced frame using welded end connections and thin profile[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(5): 1001―1020.
[14]  Wang C L, Usami T, Funayama J. Improving low-cycle fatigue performance of high-performance buckling- restrained braces by toe-finished method[J]. Journal of Earthquake Engineering, 2012, 16(8): 1248―1268.
[15]  黄波. 高性能屈曲约束支撑低周疲劳性能及抗震需求分析[D]. 南京: 东南大学土木工程学院, 2012.
[16]  Huang Bo. Low-cycle fatigue performance and seismic demands of high-performance buckling-restrained braces[D]. Nanjing: School of Civil Engineering, Southeast University, 2012. (in Chinese)
[17]  陈骥. 钢结构稳定理论与设计[M]. 北京: 科学出版社, 2008: 405―520.
[18]  Chen Ji. Stability of steel structures theory and design[M]. Beijing: Science Press, 2008: 405―520. (in Chinese)
[19]  Black C J, Makris N, Aiken I D. Component testing, stability analysis and characterization of buckling- restrained unbounded braces[R]. Berkeley: Pacific Earthquake Engineering Research Center, University of California, 2002: 14―24.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133