Kuwamura H, Akiyama H. Brittle fracture under repeated high stresses[J]. Journal of Constructional Steel Research, 1994, 29(1/2/3): 5―19.
[2]
Tateishi K, Hanji T, Minami K. A prediction model for extremely low cycle fatigue strength of structural steel[J]. International Journal of Fatigue, 2007, 29(6): 887―896.
[3]
Fell B V, Kanvinde A M. Recent fracture and fatigue research in steel structures[J]. Structure Magazine, 2009, 29(2): 14―17.
[4]
Xue L. A unified expression for low cycle fatigue and extremely low cycle fatigue and its implication for monotonic loading[J]. International Journal of Fatigue, 2008, 30(10/11): 1691―1698.
[5]
余寿文, 冯西桥. 损伤力学[M]. 北京: 清华大学出版社, 1997: 123―124.
[6]
Hancock J W, Mackenzie A C. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress states[J]. Journal of the Mechanics and Physics of Solids, 1976, 24(3): 147―160.
[7]
Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3): 201―217.
[8]
Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: Part I-yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology, 1976, 99(1): 2―15.
[9]
Kanvinde A M, Deierlein G G. Finite-element simulation of ductile fracture in reduced section pull-plates using micromechanics-based fracture models[J]. Journal of Structural Engineering, ASCE, 2007, 133(5): 656―664.
[10]
Anderson T L. Fracture Mechanics. 2nd ed[M]. Boca Raton, FL: CRC Press, 1995: 255―256.
[11]
Kanvinde A M, Deierlein G G. Void growth model and stress modified critical strain model to predict ductile fracture in structural steels[J]. Journal of Structural Engineering, 2006, 132(12): 1907―1918.
[12]
Liao F F, Wang W, Chen Y Y. Parameter calibrations and application of micromechanical fracture models of structural steels[J]. Structural Engineering and Mechanics, 2012, 42(2): 153―174.