全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

基于偶应力理论薄膜-基体界面剪应力尺寸效应的研究

DOI: 10.6052/j.issn.1000-4750.2012.10.0778, PP. 27-31

Keywords: 偶应力理论,C自然单元法,薄膜-基体,界面剪应力,尺寸效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

将C1自然单元法应用于偶应力理论,建立了偶应力理论无网格法。考虑到薄膜厚度在微米量级,与其材料的特征长度相当,因此基于构建的偶应力理论无网格法,研究了薄膜-基体复合结构界面剪应力的尺寸效应现象。计算结果表明:随着薄膜厚度的减小,无量纲界面剪应力(定义为偶应力理论下的剪应力与经典理论下的剪应力之比值)逐渐变小,尺寸效应逐渐增强。对于给定的粘合强度,偶应力理论下的剪应力要小于经典理论下的剪应力,这意味着偶应力理论下薄膜更不容易发生脱胶失效现象。

References

[1]  Fleck N A, Hutchinson J W. A phenomenological theory for strain gradient effects in plasticity[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(12): 1825―1857.
[2]  Mizutani R, Oono Y, Matsuoka J, Nasu H, Kamiya K. Coating of polymethylmethacrylate with transparent SiO2 thin films by a sol-gel method[J]. Journal Materials Science, 1994, 29(21): 5773―5778.
[3]  戴耀, 黄尽才, 徐滨士, 何家文. 拉伸法的线性分析[J]. 中国表面工程, 1998, 11(2): 33―36.
[4]  薛孟君, 刘跃进, 杨班权. 膜-基复合材料界面剪应力的三维半解析计算[J]. 力学与实践, 2002, 24(5): 50―53.
[5]  Ting B Y, Winer W O, Ramalingam S. A semi-quantitative method for thin film adhesion measurement[J]. Journal of Tribology, 1985, 107: 472―477.
[6]  Ting B Y, Ramalingam S, Winer W O. An experimental investigation of the film-to-substrate bond strength of sputtered thin film using a semi-quantitative test method[J]. Journal of Tribology, 1985, 107: 478―482.
[7]  Wei Yueguang. Microscale mechanics for metal thin film delamination along ceramic substrates[J]. Science in China, 2000, 43(5): 509―516.
[8]  Wei Y G, Hutchinson J W. Nonlinear delamination mechanics for thin films[J]. Journal of the Mechanics and Physics of Solids, 1997, 45(7): 1137―1159.
[9]  Sukumar N, Moran B, Belytschko T. The natural element method in solid mechanics[J]. International Journal for Numerical Methods in Engineering, 1998, 43: 839―887.
[10]  Sukumar N, Moran B. C 1 natural neighbor interpolant for partial differential equations[J]. Numerical Methods for Partial Differential Equations, 1999, 15(4): 417―447.
[11]  聂志峰, 周慎杰, 韩汝军, 肖林京, 王凯. 应变梯度弹性理论下微构件尺寸效应的数值研究[J]. 工程力学, 2012, 29(6): 38―46.
[12]  Nie Zhifeng, Zhou Shenjie, Han Rujun, Xiao Linjing, Wang Kai. C 1 natural element method for strain gradient linear elasticity and its application to microstructures[J]. Acta Mechanica Sinica, 2012, 28(1): 91―103.
[13]  Wang K, Zhou S J, Nie Z F. Application of the gradient smoothing technique to the natural neighbour Galerkin method for the couple-stress elasticity[J]. CMES: Computer Modeling in Engineering and Sciences, 2011, 73(1): 77―102.
[14]  聂志峰. 应变梯度弹性理论 C 1自然单元法及其应用研究[D]. 济南: 山东大学, 2010.
[15]  Mindlin R D, Tiersten H F. Effects of couple stresses in linear elasticity[J]. Archive for Rational Mechanics and Analysis, 1962, 11(5): 415―448.
[16]  Cosserat E, Cosserat F. Theorie des Corps Deformables[M]. Paris: A. Hermann & Fils, 1909.
[17]  Eringen A C. Linear theory micropolar elasticity[J]. Journal of Mathematics and Mechanics, 1966, 15: 909―923.
[18]  Stölken J S, Evans A G. A microbend test method for measuring the plasticity length scale[J]. Acta Materialia, 1998, 46(14): 5109―5115.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133