全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

桥梁地震碰撞分析中不同接触单元模型的对比分析

DOI: 10.6052/j.issn.1000-4750.2013.04.0302, PP. 11-17

Keywords: 桥梁,地震碰撞,接触单元,撞击力,对比分析,计算精度,适用条件,数值验证,模型试验

Full-Text   Cite this paper   Add to My Lib

Abstract:

地震时邻梁间的碰撞是引起桥梁局部损坏甚至落梁的主要原因。为合理分析桥梁的地震碰撞响应,基于所开发的结构精细化模拟分析平台FENAP,对比分析了桥梁地震碰撞分析中不同接触单元模型的计算精度和适用条件。在FENAP平台上引入线性弹簧、Kelvin-Voigt、Hertz和Jan-Hertz-damp等四种接触单元模型,建立了结构地震碰撞分析平台,并通过数值验证以及对正弦波和地震动激励下的模型试验的数值分析,对比分析了不同接触单元模型对结构碰撞响应的影响。研究表明:所建立的结构地震碰撞分析平台具有较高的计算精度和效率;在四种接触单元模型中,Kelvin-Voigt和Jan-Hertz-damp模型的计算精度和适用性更高,而线性弹簧和Hertz模型,由于未考虑碰撞过程中的能量损失,仅适用于恢复系数较高的近似弹性碰撞情况。

References

[1]  Priestley M J N, Seible F, Calvi G M. Seismic design and retrofit of bridge[M]. USA, New York: John Wiley and Sons INC, 1996: 8―20.
[2]  李忠献, 岳福青. 城市桥梁地震碰撞反应研究与发展[J]. 地震工程与工程振动, 2005, 25(4): 91―98.
[3]  Li Zhongxian, Yue Fuqing. State of arts of study on the seismic pounding of urban bridges[J]. Earthquake Engineering and Engineering Vibration, 2005, 25(4): 91―98. (in Chinese)
[4]  Mouzakis H P, Papadrakakis M. Three dimensional nonlinear building pounding with friction during earthquakes[J]. Journal of Earthquake Engineering, 2004, 8(1): 107―132.
[5]  Chau K T, Wei X X. Pounding of structures modeled as non-linear impacts of two oscillators[J]. Earthquake Engineering and Structural Dynamics, 2001, 30(5): 633―651.
[6]  Jankowski R. Non-linear viscoelastic modeling of earthquake-induced structural pounding[J]. Earthquake Engineering and Structural Dynamics, 2005, 34(6): 595―611.
[7]  禚一, 李忠献. 钢筋混凝土纤维梁柱单元实用模拟平台[J]. 工程力学, 2011, 28(4): 102―108.
[8]  Zhuo Yi, Li Zhongxian. A practical simulation platform of reinforced concrete fiber beam-column element[J]. Engineering Mechanics, 2011, 28(4): 102―108. (in Chinese)
[9]  禚一, 李忠献. 基于显式算法的纤维梁柱单元模型[J]. 工程力学, 2011, 28(12): 39―44.
[10]  Zhuo Yi, Li Zhongxian. Explicit algorithm-based fiber beam-column element model[J]. Engineering Mechanics, 2011, 28(12): 39―44. (in Chinese)
[11]  Zanardo G, Hao H, Modena C. Seismic response of multi-span simply supported bridges to a spatially varying earthquake ground motion[J]. Earthquake Engineering and Structural Dynamics, 2002, 31: 1325―1345.
[12]  Anagnostopoulos S A. Equivalent viscous damping for modeling inelastic impacts in earthquake pounding problems[J]. Earthquake Engineering and Structural Dynamics, 2004, 33(8): 897―902.
[13]  Van Mier J G M, Pruijssers A F, Reinhardt H W, et al. Load-time response of colliding concrete bodies[J]. Journal of Structural Engineering (ASCE), 1991, 117(2): 354―374.
[14]  Muthukumar S, DesRoches R. A Hertz contact model with non-linear damping for pounding simulation[J]. Earthquake Engineering and Structural Dynamics, 2006, 35(7): 811―828.
[15]  Jankowski R. Non-linear viscoelastic modelling of earthquake-induced structural pounding[J]. Earthquake Engineering and Structural Dynamics, 2005, 34(6): 595―611.
[16]  Jankowski R. Analytical expression between the impact damping ratio and the coefficient of restitution in the non-linear viscoelastic model of structural pounding[J]. Earthquake Engineering and Structural Dynamics, 2006, 35(4): 517―524.
[17]  Zhu P, Abe M, Fujino Y. Modeling three dimensional non-linear seismic performance of elevated bridges with emphasis on pounding of girders[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(11): 1891―1913.
[18]  Chau K T, Wei X X, Guo X, et al. Experimental and theoretical simulations of seismic poundings between two adjacent structures[J]. Earthquake Engineering and Structural Dynamics, 2003, 32(4): 537―554.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133