全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

磁流变阻尼器—斜拉索控制系统中的时滞效应

DOI: 10.6052/j.issn.1000-4750.2012.11.0847, PP. 155-159

Keywords: 斜拉索,振动控制,磁流变阻尼器,时滞,稳定性

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文应用磁流变(MR)阻尼器对斜拉索振动进行控制,建立了MR阻尼器——斜拉索控制系统的运动方程,利用Galerkin方法得到时滞动力系统,通过模态分析和线性稳定性分析,得到了时滞作用下的控制系统稳定性条件。研究表明,时滞的存在,影响了斜拉索振动控制系统的效果及结构的稳定性;对于某一确定的控制增益,MR阻尼器——斜拉索系统的控制效果随着时滞的增大而变差。

References

[1]  欧进萍. 结构振动控制——主动、半主动和智能控制[M]. 北京: 科学出版社, 2003: 296―363.
[2]  Ou Jinping. Structural vibration control—active, semi-active and intelligent control [M]. Beijing: Science Press, 2003: 296―363. (in Chinese)
[3]  Soong T T, Spencer Jr B F. Supplemental energy dissipation: State-of-the-art and state-of-the-practice [J]. Engineering Structures, 2002, 24(3): 243―259.
[4]  Yang J N, Akbarpour A, Askar G. Effect of time delay on control of seismic-excited building [J]. Journal of Structural Engineering, ASCE, 1990, 116(10): 2801―2814.
[5]  王在华, 胡海岩. 时滞动力系统的稳定性与分岔: 从理论走向应用[J]. 力学进展, 2013, 43(1): 3―20.
[6]  Wang Zaihua, Hu Haiyan. Stability and bifurcation of delayed dynamic system: from theory to application [J]. Advances in Mechanics, 2013, 43(1): 3―20. (in Chinese)
[7]  Cai G P, Huang J Z. Discrete-time variable structure control method for seismic-excited building structures with time delay [J]. Earthquake Engineering and Structural Dynamics, 2002, 31(7): 1347―1359.
[8]  潘颖, 王超, 蔡国平. 地震作用下主动减震结构的时滞离散最优控制[J]. 工程力学, 2004, 21(2): 88―94.
[9]  Pan Ying, Wang Chao, Cai Guoping. Discrete-time optimal control method for seismic-excited building structures with time delay [J]. Engineering Mechanics, 2004, 21(2): 88―94. (in Chinese)
[10]  戴护军, 徐鉴. 时滞对于参数激励系统周期运动的影响[J]. 力学季刊, 2004, 25(3): 367―374.
[11]  Dai Hujun, Xu Jian. Effects of time delay on periodic motions in nonlinear system with parametric excitation [J]. Chinese Quarterly of Mechanics, 2004, 25(3): 367―374. (in Chinese)
[12]  Hu H Y, Wang Z H. Dynamics of controlled mechanical systems with delayed feedback [M]. Berlin: Springer- Verlag, 2002: 1―284.
[13]  孙清, 张智谦, 周进雄, 等. 时滞对结构振动半主动控制效果的影响[J]. 应用力学学报, 2002, 19(3): 77―80.
[14]  Sun Qing, Zhang Zhiqian, Zhou Jinxiong, et al. Time delay effectiveness of structural vibration semi-active control [J]. Chinese Journal of Applied Mechanics, 2002, 19(3): 77―80. (in Chinese)
[15]  孙清, 张斌, 刘正伟, 等. 含双时滞振动主动控制系统超谐共振及亚谐共振分析[J]. 工程力学, 2010, 27(12): 84―89.
[16]  Sun Qing, Zhang Bin, Liu Zhengwei, et al. Analysis of superharmonic and subharmonic resonance responses of active vibration control system with double time delay [J]. Engineering Mechanics, 2010, 27(12): 84―89. (in Chinese)
[17]  薛晓敏, 孙清, 张陵, 伍晓红. 基于遗传算法策略的含时滞结构振动主动控制研究[J]. 2011, 28(3): 143―149.
[18]  Xue Xiaomin, Sun Qing, Zhang ling, Wu Xiaohong. Research on active control for time delayed structure using modified genetic algorithm [J]. 2011, 28(3): 143―149. (in Chinese)
[19]  Ying Z G, Ni Y Q, Ko J M. Parametrically excited instability analysis of a semi-actively controlled cable [J]. Engineering Structures, 2007, 29(4): 567―575.
[20]  Abdel-Rohman M, John M J, Hassan M F. Compensation of time delay effect in semi-active controlled suspension bridges [J]. Journal of Vibration and Control, 2010, 16(10): 1527―1558.
[21]  胡建华, 王修勇, 陈政清, 倪一清. 斜拉桥拉索磁流变阻尼器减振技术的参数优化研究[J]. 土木工程学报, 2006, 39(3): 91―97.
[22]  Hu Jianhua, Wang Xiuyong, Chen Zhengqing, Ni Yiqing. Parametric optimization for mitigating cable vibration by using MR dampers on cable-stayed bridges [J]. China Civil Engineering Journal, 2006, 39(3): 91―97. (in Chinese)
[23]  王修勇, 陈政清, 高赞明, 倪一清. 磁流变阻尼器对斜拉索振动控制研究[J]. 工程力学, 2002, 19(6): 22―28.
[24]  Wang Xiuyong, Chen Zhenqing, Gao Zanming, Ni Yiqing. Study of mitigating vibration on stay cables using magneto-rheological (MR) damper [J]. Engineering Mechanics, 2002, 19(6): 22―28. (in Chinese)
[25]  吕建刚, 易当祥, 张进秋, 孔庆春. 履带车辆磁流变减振器响应时间研究[J]. 实验力学, 2001, 16(3): 320―324.
[26]  Lü Jiangang, Yi Dangxiang, Zhang Jinqiu, Kong Qingchun. A research on the response time of magnetorheological damper in tracked vehicle [J]. Journal of Experimental Mechanics, 2001, 16(3): 320―324. (in Chinese)
[27]  Irvine H M. Cable structures [M]. Cambridge: MIT Press, 1981: 87―133.
[28]  Wang L H, Zhao Y Y. Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions [J]. Journal of Sound and Vibration, 2009, 327(1/2): 121―133.
[29]  Spencer Jr B F , Dyke S J, Sain M K, Carlson J D. Pheno- menological model of a magnetorheological damper [J]. Journal of Engineering Mechanics, ASCE, 1997, 123(3): 230―238.
[30]  Wereley N M, Pang L, Kamath G M. Idealized hysteresis modeling of electrorheological and magnetorheological dampers [J]. Journal of Intelligent Material Systems and Structures, 1998, 9(8): 642―649.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133