全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

螺栓连接框架结构的有限元模型修正

DOI: 10.6052/j.issn.1000-4750.2012.11.0858, PP. 26-33

Keywords: 螺栓连接,框架结构,模型修正,模态测试,响应预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

综合运用有限元仿真、试验模态测试和模型修正技术,对一个由螺栓连接的三层框架结构进行了动力学特性分析和响应预测,并对其中涉及到的相关问题进行了讨论。首先,采用不同类型单元分别建立结构的实体有限元模型、板-梁有限元模型以及三自由度集中参数模型,并进行模态计算。然后,对实际结构进行模态测试,并将三类模型的计算结果与测试数据进行对比,分析不同类型单元所建立模型的异同以及由螺栓连接的复杂性、加工装配的误差和材料参数的不准确等不确定因素对建模及计算误差所造成的影响,从而确定合理的修正参数。接着,用模态测试数据对模型参数进行修正,使得修正后的模型能够准确反映实际结构的固有频率和振型。最后,将测试获取的阻尼参数加到修正后的模型上,进行冲击激励下的响应预测,并与实际结构的测试结果进行对比,取得了满意的结果。

References

[1]  Zang Chaoping, Ewins D J. Model validation for structural dynamics in the aero-engine design process [J]. Frontiers of Energy and Power Engineering in China, 2009, 3(4): 480―488.
[2]  Bickford J H. An introduction to the design and behavior of bolted joints [M]. Boca Raton, Florida: CRC Press, 1995: 3―12.
[3]  林恩强, 郭然, 罗吉祥, 姚振汉. 螺栓紧固铝板疲劳裂纹萌生的有限元参数分析[J]. 工程力学, 2010, 27(6): 245―251.
[4]  Lin Enqiang, Guo Ran, Luo Jixiang, Yao Zhenhan. Analysis of the parameter effect on fatigue crack in riveted components with finite element method [J]. Engineering Mechanics, 2010, 27(6): 245―251. (in Chinese)
[5]  沈国辉, 陈震, 郭勇, 邢月龙, 潘峰, 孙炳楠. 螺栓节点板抗剪连接的有限元模拟方法研究[J]. 工程力学, 2013, 30(1): 119―125.
[6]  Shen Guohui, Chen Zhen, Guo Yong, Xing Yuelong, Pan Feng, Sun Bingnan. Finite element simulation methods applied to bolted gusset plates used as shear connectors [J]. Engineering Mechanics, 2013, 30(1): 119―125. (in Chinese)
[7]  Smallwood D, Gregory D, Coleman R G. Damping investigations of a simplified frictional shear joint [C]// Proceedings of the 71st Shock and Vibration Symposium, Arlington, VA, USA: Shock and Vibration Information Analysis Center, 2000: 1―12.
[8]  Song Y, Hartwigsen C J, McFarland D M, et al. Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements [J]. Journal of Sound and Vibration, 2004, 273(1): 249―276.
[9]  Hartwigsen C J, Song Y, McFarland D M, et al. Experimental study of non-linear effects in a typical shear lap joint configuration [J]. Journal of Sound and Vibration, 2004, 277(1): 327―351.
[10]  Ibrahim R A, Pettit C L. Uncertainties and dynamic problems of bolted joints and other fasteners [J]. Journal of sound and Vibration, 2005, 279(3): 857―936.
[11]  Iwan W D. A distributed-element model for hysteresis and its steady-state dynamic response [J]. Journal of Applied Mechanics, 1966, 33(4): 893―900.
[12]  Iwan W D. On a class of models for the yielding behavior of continuous and composite systems [J]. Journal of Applied Mechanics, 1967, 34(3): 612―617.
[13]  Shiryayev O V, Page S M, Pettit C L, et al. Parameter estimation and investigation of a bolted joint model [J]. Journal of Sound and Vibration, 2007, 307(3): 680―697.
[14]  Ginsberg J H. Mechanical and structural vibrations: Theory and applications [M]. New York: Wiley, 2001: 102―103.
[15]  Zang C, Schwingshackl C W, Ewins D J. Model validation for structural dynamic analysis: An approach to the sandia structural dynamics challenge [J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(29): 2645―2659.
[16]  Mottershead J E, Link M, Friswell M I. The sensitivity method in finite element model updating: A tutorial [J]. Mechanical Systems and Signal Processing, 2011, 25(7): 2275―2296.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133