全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

参数激励下碳纳米谐振器的非线性振动研究

DOI: 10.6052/j.issn.1000-4750.2012.11.0876, PP. 245-251

Keywords: 非线性,主共振,哈密尔顿原理,伽略金方法,摄动分析,碳纳米谐振器

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文研究了两端固支情况下的碳纳米管谐振器在直交流电激励作用下的非线性振动响应。考虑外激励频率接近其固有频率的主共振情况下以及几何非线性,忽略静电力的非线性、范德瓦耳斯力和初始静变形的影响,运用欧拉伯努利连续梁理论,通过哈密尔顿原理得到非线性控制方程。然后利用伽略金方法离散得到降阶方程,最后应用摄动分析方法获得其振动响应的幅频曲线。主要分析了阻尼、直交流电荷载、几何三次非线性项对响应的影响。结果表明几何三次非线性项直接影响碳纳米管谐振器在外激励作用的振动响应以及碳纳米管在交流电荷载作用下的振动响应相对于直流电荷载更加敏感,并在一定程度上发生软化行为等。

References

[1]  Wang Z L, Gao R P, Poncharal P, de Heer W A, Dai Z R, Pan Z W. Mechanical and electrostatic properties of carbon nanotubes and nanowires [J]. Materials Science and Engineering, 2001, 16(1/2): 3―10.
[2]  Gao R P, Wang Z L, Bai Z G, de Heer W A, Dai Z R, Pan Z W. Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays [J]. Physical Review Letters, 2000, 85(3): 622―625.
[3]  Jin Y, Yuan F G. Simulation of elastic properties of Single-walled carbon nanotubes [J]. Composites Science and Technology, 2003, 63(11): 1507―1515.
[4]  Postma H, Kozinsky I, Husain A, Roukes M. Dynamic range of nanotube- and nanowire-based electromechanical systems [J]. Applied Physics Letters, 2005, 86(22): 223105.
[5]  Dequesnes M, Tang S, Aluru N R. Static and dynamic analysis of carbon nanotube-based swithes [J]. Journal of Engineering Materials and Technology, 2004, 126(7): 230―237.
[6]  Dequesnes M, Rotkin S V, Aluru N R. Parameterization of continuum theories for single wall carbon nanotube switches by molecular dynamics simulations [J]. Journal of Computational Electronics, 2002, 1(3): 313―316.
[7]  Dequesnes M, Rotkin S V, Aluru N R. Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches [J]. Nanotechnology, 2002, 13(1): 120―131.
[8]  Pugno N, Ke C H, Espinosa H D. Analysis of doubly clamped nanotube devices in the finite deformation regime [J]. Journal of Applied Mechanics, 2005, 72(5): 445―449.
[9]  Ke C H, Espinosa H D, Pugno N. Numerical analysis of nanotube-based NEMS devices-part: Role of Finite Kinematics, Stretching and Charge Concentrations [J]. Journal of Applied Mechanics, 2005, 72(9): 726―731.
[10]  Ke C H, Pugno N, Peng B, Espinosa H D. Experiments and modeling of carbon nanotube-based NEMS Devices [J]. Journal of Mechanics and Physics of Solids, 2005, 53(6): 1314―1333.
[11]  Ke C H, Espinosa H D. Numerical analysis of nanotube-based NEMS devices-part: Electrostatic charge distribution on multiwalled nanotubes [J]. Journal of Applied Mechanics, 2005, 72(9): 726―731.
[12]  Nayfeh A H, Younis M H. Dynamic of MEMS resonators under superharmonic and subharmonic excitations [J]. Journal of Micromechanics and Microengineering, 2005, 15(10): 1840―1847.
[13]  Hassen M Quakad, Mohammad I Younis. Dynamic response of slacked single-walled carbon nanotube resonators [J]. Nonlinear Dyn, 2012, 67(2): 1419―1436.
[14]  Hassen M Quakad, Mohammad I Younis. Natural frequencies and mode shapes of initially curved carbon nanotube resonators under electric excitation [J]. Journal of Sound Vibration, 2011, 330(13): 3182―3195.
[15]  Hassen M Quakad, Mohammad I Younis. Nonlinear dynamics of electrically actuated carbon nanotube resonators [J]. Computational and Nonlinear Dynamics, 2010, 5(1): 011009-1―011009-13.
[16]  Greaney P A, Lani G, Cicero G, Grossman J C. Anomalous dissipation in single-walled carbon nanotube resonators [J]. American Chemical Society, 2009, 9(11): 3699―3703.
[17]  Sawano S, Arie T, Akita S. Carbon nanotube resonator in liquid [J]. American Chemical Society, Nano Letters, 2010, 10(9): 3395―3398.
[18]  Li Jinjin, Jiang Cheng, Chen Bin, Zhu Kadi. Optical mass sensing with a carbon nanotube resonator [J]. Journal of Optical Society of America B, 2012, 29(5): 965―969.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133