全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

钢筋混凝土长柱快速轴心受压试验与模拟研究

DOI: 10.6052/j.issn.1000-4750.2012.10.0811, PP. 210-217

Keywords: 钢筋混凝土长柱,轴心受压,快速加载,试验研究,动力有限元分析,应变率效应,惯性效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究钢筋混凝土长柱在快速轴心受压加载下应变率和惯性效应对其性能的影响,开展了钢筋混凝土长柱快速轴心受压加载试验和动力有限元模拟研究。设计了两组共6根构件,长细比分别为12和22,快速加载试验中实测混凝土材料应变率达到10-3/s数量级。试验结果表明,与准静载相比,快速轴心受压下构件承载力及对应的轴向变形均有不同程度的提高,并且动力增大系数随长细比增大而增大。将CEB-FIB模式规范的混凝土材料动态应力-应变关系引入混凝土塑性损伤模型,在ABAQUS中建立了钢筋混凝土长柱快速轴心受压下力学性能分析的显式动力有限元模型,数值模拟结果与试验结果吻合良好。最后,运用所建立的有限元模型分析快速加载下构件承载力动力效应的形成机制。分析结果表明,构件长细比较小时其惯性效应可以忽略,动力增大系数可以主要由应变率效应来描述,随长细比增大,惯性效应对动力增大系数的贡献越来越明显,而应变率效应仍不可忽略。

References

[1]  Soroushian P, Obaseki K. Strain rate-dependent interaction diagram for reinforced concrete section [J]. ACI Journal Proceedings, 1986, 83(1): 108―116.
[2]  Al-Haddad M S. Curvature ductility of reinforced concrete beams under low and high strain rates [J]. ACI Structural Journal, 1995, 92(5): 526―534.
[3]  林皋, 闫东明, 肖诗云, 等. 应变速率对混凝土特性及工程结构地震响应的影响[J]. 土木工程学报, 2005, 38(11): 1―8.
[4]  CEB-FIP model code 1990 [S]. Trowbridge: Redwood Books, 1993.
[5]  Bischoff P H, Perry S H. Compressive behaviour of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425―450.
[6]  Malvar L J, Ross C A. Review of strain rate efects for concrete in tension [J]. ACI Materials Joumal, 1998, 95(6): 735―739.
[7]  Yan D M, Lin G, Chen G D. Dynamic properties of plain concrete in triaxial stress state [J]. ACI Materials Journal, 2009, 106(1): 89―94.
[8]  Soroushian P, Choi K B. Steel mechanical properties at different strain rates [J]. Journal of Structural Engineering, 1987, 113(4): 663―672.
[9]  Fu H C, Erki M A, Seckin M. review of effects of loading rate on reinforced concrete [J]. Journal of Structural Engineering, 1991, 117(12): 3660―3679.
[10]  李敏, 李宏男. 建筑钢筋动态试验及本构模型[J]. 土木工程学报, 2010, 43(4): 70―75.
[11]  Li Min, Li Hongnan. Dynamic test and constitutive model for reinforcing steel [J]. China Civil Engineering Journal, 2010, 43(4): 70―75. (in Chinese)
[12]  Hakuto S. Seismic performance of reinforced concrete columns with 90 degree end hooks for shear reinforcement under high speed loading [C]// Proceedings of the Twelfth World Conference on Earthquake Engineering. Auckland, New Zealand, 2000: 1―7.
[13]  Orozco G L, Ashford S A. Effects of large velocity pulses on reinforced concrete bridge columns [R]. University of California, Berkeley, Pacific Earthquake Engineering Research Center, 2002.
[14]  Tagami J, Suzuki N, Kaneko T, et al. Dynamic loading test of reinforced concrete columns for identification of strain rate effect [C]// Proceedings of the First NEES/E-Defense Workshop on Collapse Simulation of Reinforced Concrete Building Structures. Pacific Earthquake Engineering Research Center, Berkeley, California, 2005: 291―304.
[15]  Ghannoum W, Saouma V, Haussmann G, et al. Experimental investigations of loading rate effects in reinforced concrete columns [J]. Journal of Structural Engineering, 2012, 138(8): 1032―1041.
[16]  许斌, 龙业平. 基于纤维模型的钢筋混凝土柱应变率效应研究[J]. 工程力学, 2011, 28(7): 103―116.
[17]  Xu Bin, Long Yeping. Study on the behavior of reinforced concrete columns with fiber model considering strain rate effect [J]. Engineering Mechanics, 2011, 28(7): 103―116. (in Chinese)
[18]  王德斌, 李宏男. 应变率对钢筋混凝土柱动态特性的影响[J]. 地震工程与工程振动, 2011, 31(6): 67―72.
[19]  Wang Debin, Li Hongnan. Effects of strain rate on dynamic behavior of reinforced concrete column [J]. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(6): 67―72. (in Chinese)
[20]  Reinschmidt K F, Hansen R J, Yang C Y. Dynamic tests of reinforced concrete columns [J]. ACI Journal Proceedings, 1964, 61(3): 317―334.
[21]  Iwai S, Minami K, Wakabayashi M. Stability of slender reinforced concrete members subjected to static and dynamic loads [C]// Proceedings of Ninth World Conference on Earthquake Engineering, 1988, Vol.Ⅷ: 901―906.
[22]  陈肇元, 罗家谦. 钢筋混凝土轴压和偏压构件在快速变形下的性能[R]∥清华大学抗震抗爆工程研究室. 科学研究报告集(第4集) 钢筋混凝土结构构件在冲击荷载下的性能. 北京: 清华大学出版社, 1986: 33―44.
[23]  Chen Zhaoyuan, Luo Jiaqian. The behavior of axial and eccentric loaded RC columns under rapid rate of deformation [R]// Science Report Collection of Tsinghua Resisting Earthquake and Blast Loading Institute-The Characteristics of R/C Structure Member under Blast Loading, (4). Beijing: Tsinghua University Press, 1986: 33―44. (in Chinese)
[24]  肖诗云, 许东. 应变率效应对钢筋混凝土柱的影响[J]. 防灾减灾工程学报, 2009, 29(6): 668―675.
[25]  Xiao Shiyun, Xu Dong. Influence of strain rates on reinforced concrete column [J]. Journal of Disaster Prevention and Mitigation Engineering, 2009, 29(6): 668―675. (in Chinese)
[26]  Munoz-Garcia E, Davison B, Tyas A. Structural integrity of steel connections subjected to rapid rates of loading [C]. Proceedings of the 2005 Structures Congress and the 2005 Forensic Engineering Symposium, New York, 2005: 1―12.
[27]  Lubliner J, Oliver J, Oller S, et al. A Plastic-Damage model for concrete [J]. International Journal of Solids and Structures, 1989, 25(3): 299―329.
[28]  Lee J, Fenves G L. Plastic-Damage model for cyclic loading of concrete structures [J]. Journal of Engineering Mechanics, 1998, 124(8): 892―900.
[29]  Dassault Systèmes. Abaqus analysis user’s manual (6.10) [EB]. http://abaqus.me.chalmers.se/v6.10/books/ usb/default.htm, 2010.
[30]  江见鲸, 陆新征, 叶列平. 混凝土结构有限元分析[M]. 北京: 清华大学出版社, 2006: 48.
[31]  Jiang Jianjing, Lu Xinzheng, Ye Lieping. Finite element analysis of concrete structures [M]. Beijing: Tsinghua University Press, 2006: 48. (in Chinese)
[32]  Birtel V, Mark P. Parameterised finite element modelling of RC beam shear failure [C]// 2006 ABAQUS User’s Conference. Taiwan, 2006: 95―108.
[33]  ACI Committee 318. Building code requirements for structural concrete (ACI318-08) and commentary (ACI 318R-08) [S]. Farmington Hills (MI): American Concrete Institute, 2008.
[34]  Han L H, Yao G H, Tao Z. Performance of concrete-filled thin-walled steel tubes under pure torsion [J]. Thin-Walled Structures, 2007, 45(1): 24―36.
[35]  Yu Q, Tao Z, Liu W, et al. Analysis and calculations of steel tube confined concrete (STCC) stub columns [J]. Journal of Constructional Steel Research, 2010, 66(1): 53―64.
[36]  Hou C C, Han L H, Tao Z. Simulation on concrete-filled steel tubular members under transverse impact [C]// The 2011 Word Congress on Advances in structural Engineering and Mechanics (ASEM’11+), Seoul, Korea, September, 2011: 4189―4196.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133