全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

炭黑填充橡胶超弹性本构模型的选取策略

DOI: 10.6052/j.issn.1000-4750.2012.12.0961, PP. 34-42

Keywords: 超弹性本构模型,炭黑填充橡胶,单轴拉伸,平面拉伸,等双轴拉伸

Full-Text   Cite this paper   Add to My Lib

Abstract:

橡胶材料超弹性本构参数的精确性是影响橡胶结构有限元计算精度的关键因素。对炭黑填充橡胶材料进行单轴拉伸(ST)、平面拉伸(PT)以及等双轴拉伸(ET)等三类基本变形试验,考察6种常见超弹性本构模型对试验数据的拟合能力,探讨在三类基本试验不齐全情况下超弹性本构模型的预测能力和模型选取策略。结果表明,为尽量准确地描述橡胶材料的大变形和复杂变形行为,根据基本变形试验数据的齐全程度,对超弹性本构模型应采取不同的选取策略。在ST、PT和ET基本变形试验齐全的情况下,依次优先选用Ogden(N=3)、Yeoh和Arruda-Boyce模型;只有两类基本变形试验时,应包括ET试验,这时Ogden(N=3)模型对第三类变形行为给出准确模拟;仅有ST试验时,优先选取Arruda-Boyce模型。

References

[1]  吴杰, 上官文斌. 采用粘弹性分数导数模型的橡胶隔振器动态特性的建模及应用[J]. 工程力学, 2008, 25(1): 161-166. Wu Jie, Shangguan Wenbin. Modeling and applications of dynamic characteristics for rubber isolators using viscoelastic fractional derivative model [J]. Engineering Mechanics, 2008, 25(1): 161-166. (in Chinese)
[2]  彭彪, 朱石坚. 有限长橡胶筒径向刚度精确解[J]. 工程力学, 2009, 26(4): 202-206. Peng Biao, Zhu Shijian. Exact radial stiffness of rubber bush mountings with finite lengths [J]. Engineering Mechanics, 2009, 26(4): 202-206. (in Chinese)
[3]  Brown R. Physical testing of rubber [M]. 4th ed. New York: Springer, 2006: 115-118.
[4]  龚科家, 危银涛, 叶进雄. 填充橡胶超弹性本构参数试验与应用[J]. 工程力学, 2009, 26(6): 193-198. Gong Kejia, Wei Yintao, Ye Jinxiong. Constitutive parametric experiment of tire rubber hyperelastic laws with application [J]. Engineering Mechanics, 2009, 26(6): 193-198. (in Chinese)
[5]  Boyce M C, Arruda E M. Constitutive models of rubber elasticity: A review [J]. Rubber Chemistry and Technology, 2000, 73(3): 504-523.
[6]  Treloar L R G. Stress-strain data for vulcanised rubber under various types of deformation [J]. Journal of the Chemical Society, 1944, 40: 59-70.
[7]  Seibert D J, Schöche N. Direct comparison of some recent rubber elasticity models [J]. Rubber Chemistry and Technology, 2000, 73: 366-384.
[8]  Marckmann G, Verron E. Comparison of hyperelastic models for rubber-like materials [J]. Rubber Chemistry and Technology, 2006, 79(5): 835-858.
[9]  Steinmann P, Hossain M, Possart G. Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data [J]. Archive of Applied Mechanics, 2012, 82(9): 1183-1217.
[10]  Ogden R W. Non-linear elastic deformations [M]. New York: Dover, 1997: 221.
[11]  Mooney M. A theory of large elastic deformation [J]. Journal of Applied Physics, 1940, 11(9): 582-592.
[12]  Rivlin R S. Large elastic deformations of isotropic materials. IV. Further developments of the general theory [J]. Philosophical Transactions of the Royal Society of London, Series A, 1948, 241: 379-397.
[13]  Yeoh O H. Some forms of the strain energy for rubber [J]. Rubber Chemistry and Technology, 1993, 66(5): 754-771.
[14]  Gent A N. A new constitutive relation for rubber [J]. Rubber Chemistry and Technology, 1996, 69(1): 59-61.
[15]  Gao Y C. Large deformation field near a crack tip in rubber-like material [J]. Theoretical and Applied Fracture Mechanics, 1997, 26: 155-162.
[16]  Ogden R W. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubber like solids [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1972, 326: 565-584.
[17]  Valanis K S, Landel R F. The strain-energy function of a hyperelastic material in terms of the extension ratios [J]. Journal of Applied Physics, 1967, 38(7): 2997-3002.
[18]  Arruda E M, Boyce M C. A three-dimensional model for the large stretch behavior of rubber elastic materials [J]. Journal of the Mechanics and Physics of Solids, 1993, 41(2): 389-412.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133