全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

基于共旋三角形厚薄通用壳元的几何非线性分析

DOI: 10.6052/j.issn.1000-4750.2012.12.0958, PP. 27-33

Keywords: 几何非线性,共旋,层合板复合材料,广义协调,厚薄通用,减缩积分,稳定化矩阵,一阶剪切理论

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于共旋列式方法发展了一种用于复合材料层合板结构几何非线性分析的简单高效的三结点三角形平板壳元。该壳元由具有面内转动自由度的广义协调膜元GT9与假设剪切应变场和假设单元转角场的广义协调厚薄通用板元TMT组合而成。为避免薄膜闭锁而采用单点积分计算与薄膜应变有关的项,同时增加一个稳定化矩阵以消除单点积分导致的零能模式。基于层合板一阶剪切变形理论,给出了考虑层合板具体铺层顺序的修正的横向剪切刚度,使该壳元可用于中厚层合板结构的分析。由于共旋列式大转动小应变的假设,共旋列式内核的几何线性的单元刚阵可仅计算一次而保存下来用于整个几何非线性求解的过程以提高计算效率。数值算例表明提出的壳元进行包括复合材料层合板结构的厚薄壳结构的几何非线性分析的精度高且效率高。

References

[1]  Felippa C A, Haugen B. A unified formulation of small-strain corotational finite elements-I theory [J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(21): 2285-2335.
[2]  Rankin C C, Brogan F A. An element-independent co-rotational procedure for the treatment of large rotations [J]. ASME Journal of Pressure Vessel Technology, 1986, 108(2): 165-174.
[3]  Nour-Omid B, Rankin C C. Finite rotation analysis and consistent linearization using projectors [J]. Computer Methods in Applied Mechanics and Engineering, 1991, 93(3): 353-384.
[4]  岑松, 龙志飞. 一种新型厚薄板通用三角形广义协调元[J]. 工程力学, 1998, 15(1): 10-22. Cen Song, Long Zhifei. A new triangular generalized conforming element for thin-thick plates [J]. Engineering Mechanics, 1998, 15(1): 10-22. (in Chinese)
[5]  龙驭球, 傅向荣. 基于解析试函数的广义协调四边形厚板元[J]. 工程力学, 2002, 19(3): 10-15. Long Yuqiu, Fu Xiangrong. Two generalized conforming quadrilateral thick plate elements based on analytical trial functions [J]. Engineering Mechanics, 2002, 19(3): 10-15. (in Chinese)
[6]  Long Yuqiu, Song Cen, Long Zhifei. Advanced finite element methods in structural engineering [M]. Beijing: Tsinghua University Press, 2009: 203-540.
[7]  Zienkiewicz O C, Taylor R L. The finite element method (fifth edition), volume 2: solid mechanics [M]. Butterworth Heinemann, 2000: 216-243.
[8]  Rankin C C, Loden W A, Brogan F A, Cabiness H. STAGS user manual [R]. Virginia: Langley Research Center, 2009.
[9]  Knight Jr N F, Rankin C C. STAGS example problems manual [R]. Virginia: Langley Research Center, 2006.
[10]  Pacoste C. Co-rotational flat facet triangular elements for shell instability analysis [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 156(1): 75-110.
[11]  Erikson A, Pacoste C. Element formulation and numerical techniques for stability problems in shells [J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(35): 3775-3810.
[12]  Haugen B. Buckling and stability problems for thin shell structures using high-performance finite elements [D]. Boulder: Department of Aerospace Engineering Sciences, University of Colorado, CO, 1994.
[13]  Gal E, Levy R. Geometrically nonlinear analysis of shell structures using a flat triangular shell element [J]. Archives of Computational Methods in Engineering, 2006, 13(3): 331-388.
[14]  Khosravi P, Ganesan R, Sedaghati R. Corotational non-linear analysis of thin plates and shells using a new shell element [J]. International Journal for Numerical Methods in Engineering, 2007, 69(4): 859-885.
[15]  Khosravi P, Ganesan R, Sedaghati R. An efficient facet shell element for corotational nonlinear analysis of thin and moderately thick laminated composite structures [J]. Computers and Structures, 2008, 86(9): 850-858.
[16]  Long Y Q, Xu Y. Generalized conforming triangular membrane element with rigid rotational freedoms [J]. Finite Elements in Analysis and Design, 1994, 17(4): 259-271.
[17]  岑松, 龙志飞. 对转角场和剪应变场进行合理插值的厚板元[J]. 工程力学, 1998, 15(3): 1-14. Cen Song, Long Zhifei. A Mindlin triangular plate element with improved interpolation for the rotation and shear strain fields [J]. Engineering Mechanics, 1998, 15(3): 1-14. (in Chinese)
[18]  Crisfield M A. Non-linear finite element analysis of solids and structures, volume 2: Advanced topics [M]. Chichester, Wiley, 1997: 188-212.
[19]  Argyris J H. An excursion into large rotations [J]. Computer Methods in Applied Mechanics and Engineering, 1982, 32(1/2/3): 85-155.
[20]  Ibrahimbegovic A, Taylor R L. On the role of frame-invariance in structural mechanics models at finite rotations [J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(45): 5159-5176.
[21]  王震鸣. 复合材料力学和复合材料结构力学[M]. 北京: 中国科学技术出版社, 1991: 115-120. Wang Zhenming. Mechanics of composite materials and structural mechanics of composite materials [M]. Beijing: China Science and Technology Press, 1991: 115-120. (in Chinese)
[22]  Fish J, Belytshko T. Stabilized rapidly convergent 18- degree-of-freedom flat shell triangular element [J]. International Journal for Numerical Methods in Engineering, 1992, 33(1): 149-162.
[23]  Riks E. An incremental approach to the solution of snapping and buckling problems [J]. International Journal of Solids and Structures, 1979, 15(7): 529-551.
[24]  ABAQUS. ABAQUS theory manuals, version 6.10 [M]. Dassault Systèmes, 2010: 2.3.2-1-2.3.2-5.
[25]  Sze K Y, Liu X H, Lo S H. Popular benchmark problems for geometric nonlinear analysis of shells [J]. Finite Elements Analysis and Design, 2004, 40(11): 1551-1569.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133