全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

混凝土类材料SHPB实验若干问题探讨

DOI: 10.6052/j.issn.1000-4750.2013.05.ST07, PP. 1-14

Keywords: 混凝土类材料,霍普金森压杆实验,数值模拟,惯性效应,围压,温度,三维细观模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

分离式霍普金森压杆(SHPB)实验是研究混凝土类材料动态力学性能的主要方法。该文简要回顾了当前混凝土类材料SHPB实验中存在的若干问题(如端面摩擦、骨料大小、惯性效应、温度效应等)的研究进展;通过对混凝土SHPB实验的精细化数值模拟,进一步分析了惯性效应产生机理,提出了材料的塑性流动引起的横向加速度是产生围压的关键原因,围压波在试件中心的反射和边缘的卸载形成试件中围压从中心向四周逐渐减小的抛物线型分布;利用该文所提的SHPB实验惯性效应产生机理,较好地解释了SHPB实验的尺寸和主动围压的影响规律;基于自主研制的可进行围压和温度共同加载的SHPB实验装置TSCPT-SHPB,对在5MPa~25MPa围压作用下以及在40℃~80℃温度下盐岩动态力学性能进行实验研究,结果表明,高围压下应变率效应不如低围压下显著,温度越高,强度越低;基于考虑粗骨料大小、形状及空间随机分布的三维混凝土细观模型,对混凝土各细观组分对动态效应影响进行了研究,结果表明:各组分材料静态强度越高,混凝土动态强度也越高;在相同骨料粒径条件下,骨料体积率越高,混凝土动态强度也越高;而相同骨料体积含量条件下,骨料尺寸越大,混凝土动态强度越低。

References

[1]  Abrams D A. Effect of rate of application of load on the compressive strength of concrete [J]. American Society for Testing and Materials Journal, 1917, 17(2): 364-377.
[2]  Glanville W H, Grime G, Davies W W. The behaviour of reinforced concrete piles during driving [J]. Journal of the ICE, 1935, 1(2): 150-202.
[3]  Watstein D. Effect of straining rate on the compressive strength and elastic properties of concrete [C]. ACI Journal Proceedings, ACI, 1953, 49(4): 729-744.
[4]  Bischoff P H, Perry S H. Impact behavior of plain concrete loaded in uniaxial compression [J]. Journal of Engineering Mechanics, 1995, 121(6): 685-693.
[5]  Cao J, Chung D D L. Effect of strain rate on cement mortar under compression, studied by electrical resistivity measurement [J]. Cement and Concrete Research, 2002, 32(5): 817-819.
[6]  Fang Q, Zhang J H. Three-dimensional numerical modelling of concrete-like materials subjected to dynamic loadings [M]. Advances in Protective Structures Research, 2012: 33-64.
[7]  Hao H, Hao Y F, Li Z X, Numerical quantification of factors influencing high-speed impact tests of concrete material [D]. Advances in Protective Structures Research, 2012: 97-130.
[8]  Bischoff P H, Perry S H. Compressive behaviour of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425-450.
[9]  CEB-FIP Model Code 1990, Bulletin D’Information No. 213/214 [S]. Lausanne, Switzerland: Comite International du Beton, 1993.
[10]  姜锡权, 胡时胜. 霍普金森杆实验技术发展综述[C]. Hopkinson杆实验技术研讨会会议论文集. 2007: 147-158. Jiang Xiquan, Hu Shisheng. Review of the SHPB test technique [C]. Symposium of the SHPB test technique, 2007: 147-158. (in Chinese)
[11]  王礼立. 应力波基础[M]. 北京: 国防工业出版社, 2010: 52-60. Wang Lili. Foundation of stress waves [M]. National Defense Industry Press, 2010: 52-60. (in Chinese)
[12]  Davies E D H, Hunter S C. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar [J]. Journal of the Mechanics and Physics of Solids, 1963, 11(3): 155-179.
[13]  Hakalehto K O. The behaviour of rock under impulse loads: A study using the Hopkinson split bar method [D]. Helsinki, Finnish: Finnish Academy of Technical Sciences, 1969.
[14]  Bertholf L D, Karnes C H. Two-dimensional analysis of the split Hopkinson pressure bar system [J]. Journal of the Mechanics and Physics of Solids, 1975, 23(1): 1-19.
[15]  庄茁, 由小川, 廖建晖, 等. 基于ABAQUS的有限元分析和应用[M]. 北京: 清华大学出版社, 2009: 1-8. Zhuang Zhuo, You Xiaochuang, Liao Jianhui, et al. Finite element analysis and application based on ABAQUS [M]. Beijing: Tsinghua University Press, 2009: 1-8. (in Chinese)
[16]  Bertholf L D, Karnes C H. Two-dimensional analysis of the split Hopkinson pressure bar system [J]. Journal of the Mechanics and Physics of Solids, 1975, 23(1): 1-19.
[17]  董钢, 巫绪涛, 杨伯源, 等. 直锥变截面Hopkinson压杆实验的数值模拟[J]. 合肥工业大学学报, 2005, 28(7): 795-798. Dong Gang, Wu Xutao, Yang Boyuan, et al. Numerical simulation of the conic variable cross-sectional SHPB [J]. Journal Hefei University of Technology, 2005, 28(7): 795-798. (in Chinese)
[18]  谭柱华, 盖秉政, 庞宝君, 等. 影响Hopkinson压杆实验结果因素的数值模拟分析[J]. 哈尔滨工业大学学报, 2007, 39(3): 363―366. Tan Zhuhua, Gai Binzheng, Pang Baojun, et al. The investigation of factors effect on SHPB experiment results by using numerical simulation method [J]. Journal of Harbin Institute of Technology, 2007, 39(3): 363―366. (in Chinese)
[19]  Holmquist T J, Johnson G R. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures [C]. 14th International Symposium on Ballistics Quebec, 1993: 591―600.
[20]  Malvar L J, Crawford J E, Wesevich J, Simons D. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9): 847―873.
[21]  ABAQUS Incorporated. ABAQUS analysis user's manual [M]. Michigan, USA: ABAQUS Incorporated, 2005, 20.3.1.
[22]  Riedel W, Thoma K, Hiermaier S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]. Proceedings of the 9th International Symposium on the Effects of Munitions with Structures, 1999.
[23]  方秦, 还毅, 张亚栋, 等. ABAQUS混凝土损伤塑性模型的静力性能分析[J]. 解放军理工大学学报(自然科学版), 2007, 8(3): 254―260. Fang Qin, Huan Yi, Zhang Yadong, et al. Investigation into static properties of damaged plasticity model for concrete in ABAQUS [J]. Journal of PLA University of Science and Technology, 2007, 8(3): 254―260. (in Chinese)
[24]  GB 50010-2002, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2002. GB 50010-2002, Code for design of concrete structures [S]. Beijing: China Architecture Industry Press, 2002. (in Chinese)
[25]  Xiao Y, Zheng Q, Huo J, et al. Strength of concrete filled steel tubes under high-strain rate loading [C]. Colorado, USA, sixth International Conference on Composite Construction in Steel and Concrete, 2008: 291-303.
[26]  Li Q M, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J]. International Journal of Solids and Structures, 2003, 40(2): 343-360.
[27]  Lu Y B, Li Q M, Ma G W. Numerical investigation of the dynamic compressive strength of rocks based on split Hopkinson pressure bar tests [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(5): 829-838.
[28]  Hao Y F, Hao H. Numerical investigation of the dynamic compressive behaviour of rock materials at high strain rate [J]. Rock Mechanics and Rock Engineering, 2013, 46(2): 373-388.
[29]  王晓燕, 卢芳云, 林玉亮. SHPB实验中端面摩擦效应研究[J]. 爆炸与冲击, 2006, 26(2): 134-139. Wang Xiaoyan, Lu Fangyun, Lin Yuliang. Study on interfacial friction effect in the SHPB tests [J]. Explosion and Shock Waves, 2006, 26(2): 134-139. (in Chinese)
[30]  卢玉斌, 宋丹路, 李庆明, 等. 分离式霍普金森压杆试验中工程材料端面摩擦模型的确定[J]. 振动与冲击, 2012, 31(3): 18-22. Lu Yubin, Song Danlu, Li Qingming, et al. Interface friction model in split Hopkinson pressure bar tests for engineering materials [J]. Journal of Vibration and Shock, 2012, 31(3): 18-22. (in Chinese)
[31]  张锦华, 方秦, 龚自明, 等. 基于三维细观模型的全级配混凝土静态力学性能的数值模拟[J]. 计算力学学报, 2012, 29(6): 927-933. Zhang Jinhua, Fang Qin, Gong Ziming, et al. Numerical simulation of static mechanical properties based on 3D mesoscale model of fully-graded concrete [J]. Chinese Journal of Computational Mechanics, 2012, 29(6): 927-933. (in Chinese)
[32]  Erzar B, Forquin P, Pontiroli C, et al. Influence of aggregate size and free water on the dynamic behavior of concrete subjected to impact loading [C]. 14th International Conference on Experimental Mechanics, EPJ Web of Conferences, 2010, 39007: 1-8.
[33]  Grote D L, Park S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization [J]. International Journal of Impact Engineering, 2001, 25(9): 869-886.
[34]  Park S W, Xia Q, Zhou M. Dynamic behavior of concrete at high strain rates and pressures: II. Numerical simulation [J]. International Journal of Impact Engineering, 2001, 25(9): 887-910.
[35]  Hao H, Zhou X Q. Concrete material model for high rate dynamic analysis [C]. Proceedings of the 7th International Conference on Shock and Impact Loads on Structures, Beijing, China. 2007: 753-768.
[36]  王道荣, 胡时胜. 骨料对混凝土材料冲击压缩行为的影响[J]. 实验力学, 2002, 17(1): 23-27. Wang Daorong, Hu Shisheng. Influence of aggregate on the compression properties of concrete under impact [J]. Journal of Experimental Mechanics, 2002, 17(1): 23-27. (in Chinese)
[37]  Brace W F, Jones A H. Comparison of uniaxial deformation in shock and static loading of three rocks [J]. Journal of Geophysical Research, 1971, 76(20): 4913-4921.
[38]  Field J E, Walley S M, Proud W G, et al. Review of experimental techniques for high rate deformation and shock studies [J]. International Journal of Impact Engineering, 2004, 30(7): 725-775.
[39]  Zhang M, Li Q M, Huang F L, et al. Inertia-induced radial confinement in an elastic tubular specimen subjected to axial strain acceleration [J]. International Journal of Impact Engineering, 2010, 37(4): 459-464.
[40]  Zhang M, Wu H J, Li Q M, et al. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I: Experiments [J]. International Journal of Impact Engineering, 2009, 36(12): 1327-1334.
[41]  Li Q M, Lu Y B, Meng H. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part II: Numerical simulations [J]. International Journal of Impact Engineering, 2009, 36(12): 1335-1345.
[42]  Huang C, Subhash G. Influence of lateral confinement on dynamic damage evolution during uniaxial compressive response of brittle solids [J]. Journal of the Mechanics and Physics of Solids, 2003, 51(6): 1089-1105.
[43]  Cotsovos D M, PavlovićM N. Numerical investigation of concrete subjected to compressive impact loading. Part 2: Parametric investigation of factors affecting behaviour at high loading rates [J]. Computers & structures, 2008, 86(1): 164-180.
[44]  Schwer L E, Windsor C A. Strain rate induced strength enhancement in concrete: Much ado about nothing [C]. Salzburg, Austria, Seventh European LS-DYNA Conference, 2009(5-1): 1-15
[45]  Forrestal M J, Wright T W, Chen W. The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test [J]. International Journal of Impact Engineering, 2007, 34(3): 405-411.
[46]  陶俊林, 陈裕泽, 田常津, 等. SHPB系统圆柱形试件的惯性效应分析[J]. 固体力学学报, 2005, 26(1): 107-110. Tao Junlin, Chen Yuze, Tian Changjin, et al. Analysis of the inertia effect of the cylindrical specimen in SHPB system [J]. Acta Mechanica Solida Sinica, 2005, 26(1): 107-110. (in Chinese)
[47]  Chiddister J L, Malvern L E. Compression-impact testing of aluminum at elevated temperatures [J]. Experimental Mechanics, 1963, 3(4): 81-90.
[48]  Rosenberg Z, Dawicke D, St Rander E, Bless S J. A New Technique for Heating Specimens in Split Hopkinson Bar Experiments Using Induction-Coil Heaters [J]. Experimental Mechanics, 1986, 26(3): 275-278.
[49]  Gilat A, Wu X. Elevated temperature testing with the torsional split Hopkinson bar [J]. Experimental Mechanics, 1994, 34(2): 166-170.
[50]  吴文. 盐岩的静、动力学特性实验研究与理论分析 [D]. 武汉: 中国科学院武汉岩土力学研究所, 2003. Wu Wen. Experimental studies and theoretic analysis of static and dynamic mechanical characteristics of rock salt [D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2003. (in Chinese)
[51]  陈剑文, 杨春和, 冒海军. 升温过程中盐岩动力特性实验研究[J]. 岩土力学, 2007, 28(2): 231-236. Chen Jianwen, Yang Chunhe, Mao Haijun. Experimental research on dynamical properties of rock salt during rising temperature [J]. Rock and Soil Mechanics, 2007, 28(2): 231-236. (in Chinese)
[52]  高小平, 杨春和, 吴文, 等. 温度效应对盐岩力学特性影响的试验研究[J]. 岩土力学, 2005, 26(11): 1775-1778. Gao Xiaoping, Yang Chunhe, Wu Wen, et al. Experimental studies on temperature effect of mechanical properties of rock salt [J]. Rock and Soil Mechanics, 2005, 26(11): 1775-1778. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133