全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

基于遗传算法和有限混合分布的应力谱多模态建模

DOI: 10.6052/j.issn.1000-4750.2012.12.0949, PP. 172-179

Keywords: 结构健康监测,疲劳,应力谱,有限混合分布,遗传算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文提出了一种基于遗传算法(geneticalgorithm,GA)的有限混合分布参数估计方法,应用该方法对青马大桥典型焊接节点的应力谱进行多模态建模。首先,采用小波变换消除原始应变监测数据中的温度影响,利用雨流计数法将应变时程曲线转化为日应力谱,考虑到交通荷载(包括汽车荷载和火车荷载)和台风的影响,建立标准日应力谱。然后,采用三种不同的有限混合分布函数(有限混合正态分布函数、有限混合对数正态分布函数和有限混合威布尔分布函数)以及基于遗传算法的混合参数估计方法对应力幅进行多模态建模,根据赤池信息准则(Akaike’sinformationcriterion,AIC)确定最佳的有限混合模型。最后,采用双变量有限混合分布和基于遗传算法的混合参数估计方法建立了应力幅和平均应力二维随机变量联合概率密度函数。结果表明,该文提出的基于遗传算法的有限混合分布参数估计方法可以有效应用于二维随机变量的概率建模。

References

[1]  Downing S D, Socie D F. Simple rainflow counting algorithms [J]. International Journal of Fatigue, 1982, 4(1): 31-40.
[2]  Ebeling C E. An introduction to reliability and maintainability engineering [M]. New York: McGraw Hill, 1997: 1-12.
[3]  Ni Y Q, Ye X W, Ko J M. Modeling of stress spectrum using long-term monitoring data and finite mixture distributions [J]. Journal of Engineering Mechanics, ASCE, 2012, 138(2): 175-183.
[4]  Ye X W, Ni Y Q, Wong K Y, et al. Statistical analysis of stress spectra for fatigue life assessment of steel bridges with structural health monitoring data [J]. Engineering Structures, 2012, 45: 166-176.
[5]  Ni Y Q, Ye X W, Ko J M. Monitoring-based fatigue reliability assessment of steel bridges: analytical model and application [J]. Journal of Structural Engineering, ASCE, 2010, 136(12): 1563-1573.
[6]  Ye X W, Ni Y Q, Ko J M. Experimental evaluation of stress concentration factor of welded steel bridge T-joints [J]. Journal of Constructional Steel Research, 2012, 70: 78-85.
[7]  Xia H W. SHM-based condition assessment of in-service bridge structures using strain measurement [D]. Hong Kong: The Hong Kong Polytechnic University, 2011.
[8]  McLachlan G, Peel D. Finite mixture models [M]. New York: Wiley, 2004: 1-39.
[9]  Bouveyron C, Girard S, Schmid C. High-dimensional data clustering [J]. Computational Statistics and Data Analysis, 2007, 52(1): 502-519.
[10]  Vardi Y, Shepp L A, Kaufman L. A statistical model for positron emission tomography [J]. Journal of the American Statistical Association, 1985, 80(389): 8-20.
[11]  Li J, Zha H Y. Two-way Poisson mixture models for simultaneous document classification and word clustering [J]. Computational Statistics and Data Analysis, 2006, 50(1): 163-180.
[12]  Andrews J L, McNicholas P D, Subedi S. Model-based classification via mixtures of multivariate t -distributions [J]. Computational Statistics and Data Analysis, 2011, 55(1): 520-529.
[13]  Melnykov V, Maitra R. Finite mixture models and model-based clustering [J]. Statistics Surveys, 2010, 4: 80-116.
[14]  Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm [J]. Journal of the Royal Statistical Society Series B, 1977, 39(1): 1-38.
[15]  Holland J H. Adaptation in natural and artificial system [M]. Ann Arbor: University of Michigan Press, 1975: 20-31.
[16]  Akaike, H. A new look at the statistical model identification [J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716-723.
[17]  Wong K Y. Instrumentation and health monitoring of cable-supported bridges [J]. Structural Control Health Monitoring, 2004, 11(2): 91-124.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133