全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

结合面切向接触刚度的概率统计模型

DOI: doi:10.6052/j.issn.1000-4750.2012.12.0964, PP. 226-231

Keywords: 微凸体,椭圆形接触,接合面,接触刚度,概率分布

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文考虑结合面上微凸体接触为椭圆形接触,运用弹性力学空间半无限体受载荷变形理论,并根据椭圆形接触面上压力分布的Hertz理论,推导出椭圆形接触面的长、短半轴计算式和单个微凸体接触时的切向接触刚度表达式.建立了结合面上微凸体椭圆形接触面的长、短半轴呈二维正态分布、高度呈正态分布情况下的宏观切向接触刚度模型,得到了相应的宏观切向接触刚度表达式.通过数值计算给出了切向接触刚度随结合面的法向载荷、切向载荷、椭圆微凸体的离心率、微凸体分布的相关系数、微凸体测量高度和微凸体分布的标准方差等各影响因素的变化情况,增大法向载荷可以提高结合面的切向接触刚度,而切向载荷的增大会导致切向接触刚度的减小.

References

[1]  Ibrahim R A, Pettit C L. Uncertainties and dynamic problems and bolted contacts and other fasteners[J]. Journal of Sound and Vibration, 2005, 279(3): 857―936.
[2]  Greenwood J A, Williamson J B P. Contact of nominally flat surfaces[J]. Mathematical and Physical Sciences, 1966, 295(87): 300―319.
[3]  Majumdar A, Bhushan B. Role of fractal geometry in roughness characterization and contact mechanics of surfaces[J]. ASME Journal of Tribology, 1990, 112(2): 205―216.
[4]  Wang S, Komvopoulos K. A fractal theory of the interfacial temperature distribution in the slow sliding regime: Part I —— elastic contact and heat transfer analysis[J]. ASME Journal of Tribology, 1994, 116(4): 812―818.
[5]  Jiang S, Zheng Y, Zhu H. A contact stiffness model of machined plane joint based on fractal theory[J]. ASME Journal of Tribology, 2010, 132(6): 656―698.
[6]  Ghafoor A, Dai J S, Duffy J. Stiffness modeling of the soft-finger contact in robotic grasping[J]. ASME Journal of Tribology, 2004, 646(11): 135―140.
[7]  Wu J J, The properties of asperities of real surface[J]. ASME Journal of Tribology, 2001, 394(11): 1946―1950.
[8]  Robert L J, Jeffrey L S. A multi-scale model for contact between rough surfaces[J]. Wear, 2006, 261(11/12): 1337―1347.
[9]  Persson B N J. Contact mechanics for randomly rough surface[J]. Surface Science Reports, 2006, 61(3): 201―227.
[10]  Dickrell D J, Sawyer W G. Lateral contact stiffness and the elastic foundation[J]. Tribology Letters, 2011, 41(1): 17―21.
[11]  Filippi S, Akay A, Gola M M. Measurement of tangential contact hysteresis during microslip[J]. ASME Journal of Tribology, 2004, 482(5): 78―85.
[12]  Kartal M E, Mulvihill D M, Nowell D, Hills D A. Measurements of pressure and area dependent tangential contact stiffness between rough surfaces using digital image correlation[J]. Tribology International, 2011, 44(12): 1188―1198.
[13]  何思明, 吴永, 沈均. 切向荷载下弹塑性材料的微观位移特性[J]. 工程力学, 2010, 27(2): 73―77. He Siming, Wu Yong, Shen Jun. Micro-displacement characteristics of elastic-plastic materials under tangential force[J]. Engineering Mechanics, 2010, 27(2): 73―77. (in Chinese)
[14]  喻葭临, 于玉贞, 张丙印, 吕禾. 基于扩展有限元方法的界面接触算法[J]. 工程力学, 2011, 28(4): 13―17. Yu Jialin, Yu Yuzhen, Zhang Bingyin, Lu He. A contact algorithm based on extended finite element method[J]. Engineering Mechanics, 2011, 28(4): 13―17. (in Chinese)
[15]  马辉, 汪博, 太兴宇, 闻邦椿. 基于接触分析的转定子系统整周碰摩故障模拟[J]. 工程力学, 2013, 30(2): 365―371. Ma Hui, Wang Bo, Tai Xingyu, Wen Bangchun. Full rubbing simulation of a rotor-stator system based on contact analysis[J]. Engineering Mechanics, 2013, 30(2): 365―371. (in Chinese)
[16]  Johnson K L. Contact mechanics[M]. London: Cambridge University Press, 1985: 79―128.
[17]  李辉光, 刘恒, 虞烈. 粗糙机械结合面的接触刚度研究[J]. 西安交通大学学报, 2011, 45(6): 69―74. Li Huiguang, Liu Heng, Yu Lie. Contact stiffness of rough mechanical joint surface[J]. Journal of Xi’an Jiaotong University, 2011, 45(6): 69―74. (in Chinese)
[18]  刘意, 刘恒, 易均, 等. 切向接触刚度测量方法的理论改进[J]. 西安交通大学学报, 2012, 46(1): 66―69. Liu Yi, Liu Heng, Yi Jun, et al. Theoretical modification for the measurement method of shear contact stiffness[J]. Journal of Xi’an Jiaotong University, 2012, 46(1): 66―69. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133