全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

基于推覆分析的结构倒塌安全储备系数

DOI: doi:10.6052/j.issn.1000-4750.2013.01.0002

Keywords: 倒塌安全储备系数,推覆分析,增量动力分析,塑性谱,地震动

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于增量动力分析(英文简称IDA)的倒塌安全储备系数(英文简称CMR)计算是ATC-63报告建议的方法,该方法需要做大量的非线性时程分析,计算非常耗时且效率不高,不适于结构方案设计阶段针对倒塌安全储备能力的快速评估.该文提出了基于推覆静力分析的倒塌安全储备系数(CMR)的实用计算方法,该方法中以改进的Park-Ang损伤模型作为结构整体倒塌判别准则,倒塌性能点则是通过推覆分析得到的能力曲线,并结合由各个地震动的反应谱以及Nassar-Krawinkler塑性谱生成相应的塑性需求曲线来确定.该方法结合了ATC-63报告中计算思路和推覆分析的特点,考虑了所选地震动对倒塌性能点的差异性,计算效率大大提高,且计算结果偏于保守地合理,上述特点通过一8层钢筋混凝土框架结构的算例得以证明.

References

[1]  Haselton C B, Liel A B, Deierlein G G, Dean B S, Chou J H. Seismic collapse safety of reinforced concrete buildings: I. Assessment of ductile moment frames[J]. Journal of Structural Engineering, 2011, 137(4): 481―491.
[2]  GB 50011-2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010. GB 50011-2010, Code for seismic design of buildings[S]. State Standard of the People’s Republic of China, 2010. (in Chinese)
[3]  ?ATC-63, Quantification of Building Seismic Performance Factors[S]. Applied Technology Council, 2010.
[4]  Vamvatsikos D, Cornell C A. Incremental dynamic analysis[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 491―514.
[5]  Li Y, Yin Y J, Ellingwood B R, Bulleit W M. Uniform hazard versus uniform risk bases for performance-based earthquake engineering of light-frame wood construction[J]. Earthquake Engineering and Structure Dynamics, 2010, 39: 1199―1217.
[6]  施炜, 叶列平, 陆新征, 唐代远. 不同抗震设防RC 框架结构抗倒塌能力的研究[J]. 工程力学, 2011, 28(3): 41―48. Shi Wei, Ye Lieping, Lu Xinzheng, Tang Daiyuan. Study on the collapse- resistant capacity of RC frames with different seismic fortification levels[J]. Engineering Mechanics, 2011, 28(3): 41―48. (in Chinese)
[7]  吕大刚, 于晓辉, 陈志恒. 钢筋混凝土框架结构侧向倒塌的地震易损性分析[J]. 哈尔滨工业大学学报, 2011, 43(6): 1―5. Lü Dagang, Yu Xiaohui, Chen Zhiheng. Lateral seismic collapse fragility analysis of RC frame structures[J]. Journal of Harbin Institute of Technology, 2011, 43(6): 1―5. (in Chinese)
[8]  陆新征, 张万开, 柳国环. 基于推覆分析的RC 框架地震倒塌易损性预测[J]. 地震工程与工程振动, 2012, 32(4): 1―6. Lu Xinzheng, Zhang Wankai, Liu Guohuan. Prediction of seismic collapse vulnerability of RC frame based on pushover analysis method[J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 32(4): 1―6. (in Chinese)
[9]  Kunnath S K, Reinhorn A M, Abel J F. A computational tool for seismic performance of reinforced concrete buildings[J]. Computers and Structures, 1992, 41(1): 157―173.
[10]  Krawinkler H, Seneviratna G D P K. Pros and cons of a pushover analysis of seismic performance evaluation[J]. Engineering Structures, 1998, 20(4): 452―464.
[11]  FEMA 356, Pre-standard and commentary for the seismic rehabilitation of buildings[S]. Washington, D.C.: Federal Emergency Management Agency, 2000.
[12]  NewMark N M, Hall W J. Earthquake spectra and design[M]. California: Earthquake Engineering Resistant Institute, 1982: 55―68.
[13]  范立础, 卓卫东. 桥梁延性抗震设计[M]. 北京: 人民交通出版社, 2001: 106―112. Fan Lichu, Zhuo Weidong. Seismic ductility design for bridge[M]. Beijing: China Communication Press, 2001: 106―112. (in Chinese)
[14]  Nassar A A, Krawinkler H. Seismic demands for SDOF and MDOF systems[R]. California: The John A. Blume Earthquake Engineering Center, 1991: 12―45.
[15]  程智慧. 强震作用下钢筋混凝土框架倒塌安全储备与损伤性能研究[D]. 沈阳: 东北大学, 2010: 37―45. Cheng Zhihui. Research on collapse margin ratio and damage performance of reinforced concrete frames under severe earthquakes[D]. Shenyang: Northeastern University, 2010: 37―45. (in Chinese)
[16]  PKPM软件[R]. 中国建筑科学研究院, 2010. PKPM software[R]. China Academy of Building Research, 2010. (in Chinese)
[17]  Elnashai A S, Papanikolaou V K, Lee D H. ZeusNL User Manual (Version 1.8.8)[M]. USA: University of Illinois at Urbana-Champaign, 2010.
[18]  Pacific Earthquake Engineering Research Center, PEER Strong Motion Database[DB/OL]. http://peer.berkeley. edu/smcat, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133