全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

基于对数型Heaviside近似函数作为过滤函数的动力响应结构拓扑优化ICM方法

DOI: doi:10.6052/j.issn.1000-4750.2013.03.0247, PP. 13-20

Keywords: 拓扑优化,动力响应,过滤函数,ICM方法,振幅约束

Full-Text   Cite this paper   Add to My Lib

Abstract:

应用ICM(IndependentContinuousandMapping)方法,建立了以重量最小为目标函数,以连续频率带或离散点频率的简谐激励下的响应振幅为约束的拓扑优化模型.引入了对数型Heaviside近似函数作为过滤函数,并做了敏度分析,利用对偶二次规划进行优化模型的求解,并运用敏度过滤的方法处理动力响应数值不稳定的问题.数值算例比较了利用对数型函数和幂函数作为过滤函数时对拓扑结构的影响,结果显示利用对数型函数较幂函数结构优化迭代次数更少,收敛更快.

References

[1]  Du Jianbin, Olhoff N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps[J]. Structural and Multidisciplinary Optimization, 2007, 34(2): 91―110.
[2]  Bruggi M, Taliercio A. Maximization of the fundamental eigenfrequency of micropolar solids through topology optimization[J]. Structural and Multidisciplinary Optimization, 2012, 46(4): 549―560.
[3]  刘晓峰, 阎军, 程耿东. 采用自动分组遗传算法的频率约束下桁架拓扑优化[J]. 计算力学学报, 2011, 28(1): 1―7. Liu Xiaofeng, Yan Jun, Cheng Gengdong. Topology optimization of skeletal structures with frequency constraints based on automatic grouping genetic algorithm[J]. Chinese Journal of Computational, 2011, 28(1): 1―7. (in Chinese)
[4]  邱海, 隋允康, 叶红玲. 频率约束板结构拓扑优化[J]. 固体力学学报, 2012, 33(2): 189―198. Qiu Hai, Sui Yunkang, Ye Hongling. Topological optimization of the plate structure subjected to the frequency constraints[J]. Acta Mechanica Solida Sinica, 2012, 33(2): 189―198. (in Chinese)
[5]  Ma Z D, Kikuchi N, Hagiwara I. Structural topology and shape optimization for a frequency response problem[J]. Computational Mechanics, 1993, 13(3): 157―174.
[6]  Allahdadian S, Boroomand B, Barekatein A R. Towards optimal design of bracing system of multi-story structures under harmonic base excitation through a topology optimization scheme[J]. Finite Elements in Analysis and Design, 2012, 61(11): 60―74.
[7]  Kang Z, Zhang X, Jiang S, et al. On topology optimization of damping layer in shell structures under harmonic excitations[J]. Structural and Multidisciplinary Optimization, 2012, 46(1): 51―67.
[8]  Rong J H, Xie Y M,Yang X Y, et al. Topology optimization of structures under dynamic response constraints[J]. Journal of Sound and Vibration, 2000, 234(2): 177―189.
[9]  张桥, 张卫红, 朱继宏. 动力响应约束下的结构拓扑优化设计[J]. 机械工程学报, 2010, 46(15): 45―51. Zhang Qiao, Zhang Weihong, Zhu Jihong. Topology optimization of structures under dynamic response constraints[J]. Journal of Mechanical Engineering, 2010, 46(15): 45―51. (in Chinese)
[10]  Motamarri P, Ramani A, Kaushik A. Structural topology synthesis with dynamics and nonlinearities using equivalent linear systems[J]. Structural and Multidisciplinary Optimization, 2012, 45(4): 545―558.
[11]  程耿东, 顾元宪, 王健. 我国机械优化研究与应用的综述和展望[J]. 机械强度, 1995, 17(2): 68―74. Cheng Gengdong, Gu Yuanxian, Wang Jian. A prospective review on research and application of optimal design of mechanical systems in china[J]. Journal of Mechanical Strength, 1995, 17(2): 68―74. (in Chinese)
[12]  郭旭, 顾元宪, 赵康. 广义变分原理的结构形状优化伴随法灵敏度分析[J]. 力学学报, 2004, 36(3): 288―295. Guo Xu, Gu Yuanxian, Zhao Kang. A new topology description function based approach for structural topology optimization[J]. Acta Mechanica Sinica, 2004, 36(3): 288―295. (in Chinese)
[13]  彭细荣, 隋允康. 动响应位移幅值敏度分析的伴随法[J]. 应用力学学报, 2008, 25(2): 247―252. Peng Xirong, Sui Yunkang. Chinese Sensitivity analysis for frequency response amplitude with adjoint method[J]. Journal of Applied Mechanics, 2008, 25(2): 247―252. (in Chinese)
[14]  Pedersen N L. Maximization of eigenvalues using topology optimization[J]. Structural and Multidisciplinary Optimization, 2000, 20(1): 2―11.
[15]  Sigmund O, Petersson J. Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima[J]. Structural Optimization, 1998, 16(1): 68―75.
[16]  Sigmund O, Maute K. Sensitivity filtering from a continuum mechanics perspective[J]. Structural and Multidisciplinary Optimization, 2012, 46(4): 471―475.
[17]  Guest J K, Prevost J H, Belytschko T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions[J]. International Journal for Numerical Methods in Engineering, 2004, 61(2): 238―254.
[18]  隋允康. 建模·变换·优化—结构综合方法新进展[M]. 大连: 大连理工大学出版社, 1996: 177―195. Sui Yunkang. Modeling, tansformation and optimization: New developments of structural synthesis method[M]. Dalian: Dalian University of Technology Press, 1996: 177―195. (in Chinese)
[19]  隋允康, 叶红玲, 刘建信, 等. 追究根基的结构拓扑优化方法[J]. 工程力学, 2008, 25(增刊2): 7―19. Sui Yunkang, Ye Hongling, Liu Jianxin, et al. A structural topological optimization method based on exploring conceptual root[J]. Engineering Mechanics, 2008, 25(Suppl 2): 7―19. (in Chinese)
[20]  隋允康, 宣东海, 叶红玲, 铁军. 阶跃函数高精度逼近的结构拓扑优化方法[J]. 计算力学学报, 2010, 27(6): 959―967. Sui Yunkang, Xuan Donghai, Ye Hongling, Tie Jun. Structural topology optimization method using high accuracy approximation of the step function[J]. Chinese Journal of Computational Mechanics, 2010, 27(6): 959―967. (in Chinese)
[21]  张可村, 李换琴. 工程优化方法及其应用[M]. 西安: 西安交通大学出版社, 2007: 21―22. Zhang Kecun, Li Huanqin. Engineering optimization method and its application[M]. Xi’an: Xi’an Jiaotong University Press, 2007: 21―22. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133