全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

建筑结构基于能量抗震设计方法研究

DOI: doi:10.6052/j.issn.1000-4750.2013.05.0388

Keywords: 基于能量抗震设计,耗能机制控制,耗能分布,钢支撑框架结构,RC框架结构,RC框-剪结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文系统总结了建筑结构基于能量抗震设计方法的相关研究成果,指出结构损伤耗能机制控制是确定结构累积耗能分布和实现基于能量抗震设计的关键.分别针对钢支撑框架结构、RC框架结构和RC框-剪结构的合理耗能机制控制进行了研究.在此基础上,建立了基于能量抗震设计方法的实施框架,并分别针对钢支撑框架结构、RC框架结构和RC框-剪结构给出了具体的基于能量抗震设计方法.

References

[1]  程光煜, 叶列平. 弹塑性SDOF系统累积滞回耗能谱[J]. 工程抗震与结构加固, 2007, 29(2): 1―7. Cheng Guangyu, Ye Lieping. Cumulative hysteretic energy spectra of SDOF systems[J]. Earthquake Resistant Engineering and Retrofitting, 2007, 29(2): 1―7. (in Chinese)
[2]  程光煜, 叶列平. 弹塑性MDOF系统地震输入能量研究[J]. 工程抗震与加固改造, 2007, 29(6): 29―35. Cheng Guangyu, Ye Lieping. Earthquake energy input of inelastic MDOF systems[J]. Earthquake Resistant Engineering and Retrofitting, 2007, 29(6): 29―35.(in Chinese)
[3]  Prasanth T, Ghosh S, Collins K R. Estimation of hysteretic energy demand using concepts of modal pushover analysis[J]. Earthquake Engineering and Structural Dynamics, 2008, 37(6): 975―990.
[4]  Chopra A K, Goel R K. A modal pushover analysis procedure for estimating seismic demands for buildings[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 561―582.
[5]  Chopra A K, Goel R K. A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings[J]. Earthquake Engineering and Structural Dynamics, 2004, 33(8): 903―927.
[6]  Rathore M, Chowdhury A R, Ghosh S. Approximate methods for estimating hysteretic energy demand on plan-asymmetric buildings[J]. Journal of Earthquake Engineering, 2011, 15(1): 99―123.
[7]  Akbas B, Shen J, Hao H. Energy approach in performance-based seismic design of steel moment resisting frames for basic safety objective[J]. Structural Design of Tall Buildings, 2001, 10(3): 193―217.
[8]  Shen J, Akbas B. Seismic energy demand in steel moment frames[J]. Journal of Earthquake Engineering, 1999, 3(4): 519―559.
[9]  肖明葵. 基于性能的抗震结构位移及能量反应分析方法研究[D]. 重庆: 重庆大学, 2004. Xiao Mingkui. Analysis method of displacement and energy responses for evaluating the performance of seismic structures[D]. Chongqing: Chongqing University, 2004. (in Chinese)
[10]  史庆轩, 熊仲明, 李菊芳. 框架结构滞回耗能在结构层间分配的计算分析[J] . 西安建筑科技大学学报(自然科学版), 2005, 37(2):174―188. Shi Qingxuan, Xiong Zhongming, Li Jufang. Calculation analysis of the storey distribution of hysteretic energy for frame structures[J]. Journal of Xi’an University of Architecture & Technology, 2005, 37(2):174―188. (in Chinese)
[11]  缪志伟. 钢筋混凝土框架剪力墙结构基于能量抗震设计方法研究[D]. 北京: 清华大学, 2009. Miao Zhiwei. Study on energy-based seismic design methodology for reinforced concrete frame-shear wall structures[D]. Beijing: Tsinghua University, 2009. (in Chinese)
[12]  Housner G W. Limit design of structures to resist earthquakes[C]. Proceedings of the First World Conference on Earthquake Engineering. Berkeley, California: Earthquake Engineering Research Institute, 1956: 1―12.
[13]  Akiyama H. Earthquake resistant limit state design for buildings[M]. Tokyo: University of Tokyo Press, 1985: 23―30
[14]  Fajfar P, Vidic T, Fischinger M. Seismic demand in medium- and long-period structures[J]. Earthquake Engineering & Structural Dynamics, 1989, 18(4): 1133―1144.
[15]  Uang C M, Bertero V V. Evaluation of seismic energy in structures[J]. Earthquake Engineering & Structural Dynamics, 1990, 19(1): 77―90.
[16]  Nurtug A, Sucuoglu H. Prediction of seismic energy dissipation in SDOF systems[J]. Earthquake Engineering and Structural Dynamics, 1995, 24(9): 1215―1223.
[17]  肖明葵, 刘波, 白绍良. 抗震结构总输入能量及其影响因素分析[J]. 重庆建筑大学学报, 1996, 18(2): 21―33. Xiao Mingkui, Liu Bo, Bai Shaoliang. Analysis of the total energy and its influencing factors for seismic structures[J]. Journal of Chongqing Jianzhu University, 1996, 18(2): 21―33. (in Chinese)
[18]  Riddell R, Garcia J E. Hysteretic energy spectrum and damage control[J]. Earthquake Engineering and Structural Dynamics, 2001, 30(12): 1791―1816.
[19]  程光煜, 叶列平. 弹塑性SDOF系统的地震输入能量谱[J]. 工程力学, 2008, 25(2): 28―39. Cheng Guangyu, Ye Lieping. Earthquake input energy spectrum for inelastic SDOF systems[J]. Engineering Mechanics, 2008, 25(2): 28―39. (in Chinese)
[20]  刘哲锋,沈蒲生. 高层混合结构滞回耗能分布规律的研究[J]. 工程抗震与加固改造, 2007, 29(5): 7―11. Liu Zhefeng, Shen Pusheng. Evaluation of hysteric energy to input energy ratio in tall hybrid structures[J]. Earthquake Resistant Engineering and Retrofitting, 2007, 29(5): 7―11.(in Chinese)
[21]  Akbas B, Tugsal U M, Kara F I. An evaluation of energy response and cumulative plastic rotation demand in steel moment-resisting frames through dynamic/static pushover analyses[J]. Structural Design of Tall and Special Buildings, 2009, 18(4): 405―426.
[22]  Bojorquez E, Ruiz S E, Teran-Gilmore A. Reliability-based evaluation of steel structures using energy concepts[J]. Engineering Structures, 2008, 30(6): 1745―1759.
[23]  Bojorquez E, Reyes-Salazar A, Teran-Gilmore A, Ruiz S E. Energy-based damage index for steel structures[J]. Steel and Composite Structures, 2010, 10(4): 331―348.
[24]  Fajfar P, Gaspersic P. The N2 method for the seismic damage analysis of RC buildings[J]. Earthquake Engineering & Structural Dynamics, 1996, 25(1): 31―46.
[25]  Chou C C, Uang C M. A procedure for evaluating seismic energy demand of framed structures[J]. Earthquake Engineering & Structural Dynamics, 2003, 32(2): 229―244.
[26]  朱建华, 沈蒲生. 基于能量原理的钢筋混凝土筒体结构抗震性能研究[J]. 地震工程与工程振动, 2006, 26(5): 109―113. Zhu Jianhua, Shen Pusheng. Seismic analysis of reinforced concrete frame- core structures based on energy concept[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(5): 109―113. (in Chinese)
[27]  Benavent-Climent A, Zahran, R. An energy-based procedure for the assessment of seismic capacity of existing frames: Application to RC wide beam systems in Spain[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(5): 354―367.
[28]  叶列平, 程光煜, 曲哲, 陆新征. 基于能量抗震设计方法研究及其在钢支撑框架结构中的应用[J]. 建筑结构学报, 2012, 33(11): 53―62. Ye Lieping. Cheng Guangyu, Qu Zhe, Lu Xinzheng. Study on energy-based seismic design method and application on steel braced frame structures[J]. Journal of Building Structures, 2012, 33(11): 53―62. (in Chinese)
[29]  Gupta A, Krawinkler H. Behavior of ductile SMRFs at various seismic hazard levels[J]. Journal of Structural Engineering, ASCE, 2000, 126(1): 98―107.
[30]  Park Y J, Ang A S, Wen Y K. Seismic damage analysis of reinforced concrete buildings[J]. Journal of Structural Engineering, ASCE, 1985, 111(4): 740―757.
[31]  McCabe S L, Hall W J. Assessment of seismic structural damage[J]. Journal of Structural Engineering, ASCE, 1989, 115(9): 2166―2183.
[32]  Kunnath S K, Chai Y H. Cumulative damage-based inelastic cyclic demand spectrum[J]. Earthquake Engineering & Structural Dynamics, 2004, 33(4): 499―520.
[33]  Colombo A, Negro P. A damage index of generalized applicability[J]. Engineering Structures, 2005, 27: 1164―1174.
[34]  Teran-Gilmore A, Jirsa J O. A damage model for practical seismic design that accounts for low cycle fatigue[J]. Earthquake Spectra, 2005, 21(3): 803―832.
[35]  Rodriguez M E, Padilla D. A damage index for the seismic analysis of reinforced concrete members[J]. Journal of Earthquake Engineering, 2009, 13(3): 364―383.
[36]  Fajfar P. Equivalent ductility factors taking into account low-cycle fatigue[J]. Earthquake Engineering and Structural Dynamics, 1992, 21(10): 837―848.
[37]  Teran-Gilmore A, Avila E, Rangel G. On the use of plastic energy to establish strength requirements in ductile structures[J]. Engineering Structures, 2003, 25(7): 965―980.
[38]  Park Y J, Ang H S, Wen Y K. Damage-limiting aseismic design of buildings[J]. Earthquake Spectra, 1987, 3(1): 1―26.
[39]  Krawinkler H, Zohrei M. Cumulative damage in steel structures subjected to earthquake ground motions[J]. Computers and Structures, 1983, 16: 531―541.
[40]  Benavent-Climent A. An energy-based damage model for seismic response of steel structures[J]. Earthquake Engineering and Structural Dynamics, 2007, 36: 1049―1064.
[41]  BSSC. FEMA-450. NEHRP Recommended Provisions and Commentary for Seismic Regulations for New Buildings and Other Structures[S]. Washington, D.C.: Building Seismic Safety Council, 2004.
[42]  Leelataviwat S, Goel S C, Stojadinovic B. Energy-based seismic design of structures using yield mechanism and target drift[J]. Journal of Structural Engineering 2002,128(8): 1046―1054.
[43]  白久林, 欧进萍. 基于能量平衡的钢筋混凝土框架结构抗震塑性设计方法[J]. 建筑结构学报, 2012, 33(10): 22―31. Bai Jiulin, Ou Jinping. Seismic plastic design of RC frame structure based on energy balance[J]. Journal of Building Structures. , 2012, 33(10): 22―31. (in Chinese)
[44]  Choi H, Kim J. Energy-based seismic design of buckling-restrained braced frames using hysteretic energy spectrum[J]. Engineering Structures, 2006, 28(2): 304―311.
[45]  Choi H, Kim J. Evaluation of seismic energy demand and its application on design of buckling-restrained braced frames[J]. Structural Engineering and Mechanics, 2009, 31(1): 93―112.
[46]  Benavent-Climent A. An energy-based method for seismic retrofit of existing frames using hysteretic dampers[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(10): 1385―1396.
[47]  Habibi A, Chan R W K, Albermani F. Energy-based design method for seismic retrofitting with passive energy dissipation systems[J]. Engineering Structures, 2013, 46(1): 77―86.
[48]  叶列平, 陆新征, 马千里, 程光煜,宋世研,缪志伟,潘鹏. 屈服后刚度对建筑结构地震响应影响的研究[J]. 建筑结构学报, 2009, 30(2): 17―29. Ye Lieping, Lu Xinzheng, Ma Qianli, Cheng Guangyu, Song Shiyan, Miao Zhiwei, Pan Peng. Study on the influence of post-yielding stiffness to the seismic response of building structures[J]. Journal of Building Structures, 2009, 30(2): 17―29.(in Chinese)
[49]  Whittaker A S, Uang C M, Bertero V V. Seismic testing of eccentrically braced dual steel systems[J]. Earthquake Spectra, 1989, 5(2): 429―449.
[50]  Connor J J, Wada A, Iwata M, Hunag Y H. Damage-controlled structures. 1:Preliminary design methodology for seismically active regions[J]. Journal of Structural Engineering, ASCE, 1997, 123(4): 423―431.
[51]  Harada Y, Akiyama H. Seismic design of flexible-stiff mixed frame with energy concentration[J]. Engineering Structures, 1998, 20(12): 1039―1044.
[52]  马千里. 钢筋混凝土框架结构基于能量抗震设计方法研究[D]. 北京: 清华大学, 2009. Ma Qianli. Study on energy-based seismic design methodology for reinforced concrete frame structures[D]. Beijing: Tsinghua University, 2009. (in Chinese)
[53]  叶列平,马千里,缪志伟. 钢筋混凝土框架结构强柱弱梁设计方法的研究[J]. 工程力学, 2010, 27(12): 102―113. Ye Lieping, Ma Qianli, Miao Zhiwei. Study on weak beam-strong column design method of RC frame structures[J]. Engineering Mechanics, 2010, 27(12): 102―113.(in Chinese)
[54]  徐福江. 钢筋混凝土框架-核心筒结构基于位移抗震设计方法研究[D]. 北京: 清华大学, 2006. Xu Fujiang. Studies on displacement-based seismic design methodology of reinforced concrete frame-core wall structures[D]. Beijing: Tsinghua University, 2006. (in Chinese)
[55]  缪志伟,叶列平. 罕遇地震作用下钢筋混凝土框架-剪力墙结构的耗能机制分析[J]. 建筑结构学报, 2013, 34(2): 27―34. Miao Zhiwei, Ye Lieping. Study on energy dissipation mechanism of reinforced concrete frame-shear-wall structure under severe earthquakes[J]. Journal of Building Structures, 2013, 34(2): 27―34. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133