全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

工字形截面的延性系数和面向抗震设计的钢截面分类

DOI: doi:10.6052/j.issn.1000-4750.2012.12.1013

Keywords: 工形截面,延性系数,截面分类,抗震设计,宽厚比,相关关系

Full-Text   Cite this paper   Add to My Lib

Abstract:

对压弯荷载作用下的工形截面模型进行了考虑几何和材料非线性、残余应力、初始几何缺陷的非线性分析,得到弯矩-曲率曲线,确定不同通用宽厚比下截面的延性系数,提出工形截面的延性系数计算公式.根据面向抗震设计的钢构件截面分类的方法,利用结构延性与截面延性系数的关系和该文得到的截面延性系数的计算公式以及结构影响系数中是否包含超强系数,分别给出了各类截面板件的通用宽厚比分界.将通用宽厚比分界表示成翼缘宽厚比和腹板宽厚比的相关关系,拟合了相关关系的计算公式.

References

[1]  EN1993-1-1:2006, Eurocode 3: Design of steel structures Part 1-5: Plated structural elements[S]. Brussels, Belgium: European Communities for Standardization, Europe, 2006.
[2]  Beg D, Hladnik L. Slenderness limit of class 3 I cross-sections made of high strength steel[J]. Journal of Constructional Steel Research, 1996, 38(3): 201―217.
[3]  D’Aniello Mario, Landolfo Raffaele, Piluso Vincenzo, Rizzano Gianvittorio. Ultimate behavior of steel beams under non-uniform bending[J]. Journal of Constructional Steel Research, 2012, 78(7): 144―158.
[4]  Nakashima Masayoshi. Variation of ductility capacity of steel beam-columns[J]. Journal of Structural Engineering, 1994, 120(7): 1941―1960.
[5]  Gioncu Victor, Petcu Dana. Available rotation capacity of wide-flange beams and beam-columns part 1. Theoretical approaches[J]. Journal of Constructional Steel Research, 1997, 43(1/2/3): 161―217.
[6]  Gioncu Victor, Petcu Dana. Available rotation capacity of wide-flange beams and beam-columns part 2. Experimental and numerical tests[J]. Journal of Constructional Steel Research, 1997, 43(1/2/3): 219―244.
[7]  Gioncu Victor, Mosoarca Marius, Anastasiadis Anthimos. Prediction of available rotation capacity and ductility of wide-flange beams Part 1: DUCTROT-M computer program[J]. Journal of Constructional Steel Research, 2011, 69(9): 8―19.
[8]  Anastasiadis Anthimos, Mosoarca Marius, Gioncu Victor. Prediction of available rotation capacity and ductility of wide-flange beams Part 2: Applications[J]. Journal of Constructional Steel Research, 2011, 68(8): 176―191.
[9]  Kato B. Rotation capacity of H-section members as determined by local buckling[J]. Journal of Constructional Steel Research, 1989, 13(2/3): 95―109.
[10]  Kato B. Deformation capacity of steel structures[J]. Journal of Constructional Steel Research, 1990, 13: 33―94.
[11]  AIJ2010, 鋼構造限界狀態設計指針·同解说[S]. 日本: 日本建築學會, 2010. AIJ2010, Recommendation for limit state design of steel structures[S]. Japan: Japan Architectural Institute, 2002. (in Japanese)
[12]  童根树, 付波. 受压和受弯板延性系数和面向抗震设计的钢截面分类[J]. 工程力学, 2013, 30(3): 323―330. Tong Genshu, Fu Bo. Ductility factors of plates and section classification for seismic design[J]. Engineering Mechanics, 2013, 30(3): 323―330. (in Chinese)
[13]  石永久, 王萌, 王元清. 结构钢材循环荷载下的本构模型研究[J]. 工程力学, 2012, 29(9): 92―98. Shi Yongjiu, Wang Meng, Wang Yuanqing. Study on constitutive model of structural steel under cyclic loading[J]. Engineering Mechanics, 2012, 29(9): 92―98. (in Chinese)
[14]  Vayas Ioannis. Stability and ductility of steel elements[J]. Journal of Constructional Steel Research, 1997, 44(1/2): 23―50.
[15]  Davids A J, Hancock G J. Compression tests of short welded I‐sections[J]. Journal of Structural Engineering, 1986, 112(5): 960―976.
[16]  彭国之. 薄壁截面的局部稳定性研究[D]. 杭州: 浙江大学, 2012. Peng Guozhi. The research on local buckling of thin-walled section[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
[17]  蔡志恒. 双周期标准化的弹塑性反应谱研究[D]. 杭州: 浙江大学, 2011. Cai Zhiheng. Inelastic spectra normalized by two characteristic periods[D]. Hangzhou: Zhejiang University, 2011. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133