全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

基于模型试验的悬索桥结构损伤识别研究

DOI: doi:10.6052/j.issn.1000-4750.2012.12.0980, PP. 132-137

Keywords: 悬索桥,损伤识别,健康监测,模型试验,神经网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过整桥模型试验,探讨了悬索桥结构损伤识别方法.首先面向损伤识别研究设计制作了长10m的悬索桥试验模型,并通过模型误差分析建立了相应的高精度有限元模型.基于悬索桥结构健康监测和试验检测的主要常用参数以及这些参数对结构损伤的灵敏性和相关性研究,确定损伤识别策略.采用有限元模型模拟可能的损伤工况,从而生成BP网络的训练样本数据.再将试验模型作为“实际结构”通过损伤模拟试验生成网络测试数据.就试验模拟的损伤情况而言,对损伤位置的识别准确率达到了86%,相应的损伤程度识别精度也达到可接受程度.显示了该方法较好的应用前景,对基于监测系统的悬索桥健康状态识别与评价具有参考意义.

References

[1]  Eggers D W, Stubbs N. Structural assessment using modal analysis techniques[C]// Proceedings of the 12th International Modal Analysis Conference. Honolulu, Hawaii, 1994, II: 1595―1601.
[2]  Morassi A, Rovere N. Localizing a notch in a steel frame from frequency measurements[J]. Journal of Engineering Mechanics, ASCE, 1997, 123: 422―432.
[3]  Fox C H J. The location of defects in structures: A comparison of the use of natural frequency and mode shape data[C]// Proceedings of the 10th International Modal Analysis Conference. Las Vegas, Nevada, 1992, I: 522―528.
[4]  Johnson E A, Lam H F, Katafygiotis L S, et al. A Benchmark problem for structural health monitoring and damage detection[C]// Proceedings of the 14th Engineering Mechanics Conference. Austin, Texas, USA, 2000.
[5]  Povich C R, Lim T W. An artificial neural network approach to structural damage detection using frequency response functions[C]// Proceedings of the 1994 AIAA/ASME Adaptive Structures Forum, 1994: 151―159.
[6]  伍雪南, 孙宗光, 毕波, 苏健. 基于吊索局部振动与神经网络技术的悬索桥损伤定位[J]. 振动与冲击, 2009, 28(10): 203―206. Wu Xuenan, Sun Zongguang, Bi Bo, Su Jian. Damage location in a suspension bridge based on hanger local vibration and neural network technique[J]. Journal of Vibration and Shock, 2009, 28(10): 203―206. (in Chinese)
[7]  孙宗光, 石健, 栗燕娜. 面向健康诊断的悬索桥试验模型设计与分析[J]. 工程力学, 2008, 25(1): 192―195, 208. Sun Zongguang, Shi Jian, Li Yanna. Design and analysis of health-diagnosis-oriented test model of suspension bridges[J]. Engineering Mechanics, 2008, 25(1): 192―195, 208 (in Chinese)
[8]  Ko J M, Sun Z G, Ni Y Q. Multi-stage identification scheme for detecting damage in cable-stayed Kap Shui Mun Bridge[J]. Engineering Structures, 2002, 24(7): 857―868.
[9]  Ko H, Baran R, Arozullah M. Neural network based novelty filtering for signal detection enhancement[C]// Proceedings of the 35th Midwest Symposium on Circuits and Systems. IEEE, Washington D C, 1992: 252―255.
[10]  Chen S S, Kim S. Neural network based signal monitoring in a smart structural system[C]// Proceedings of the SPIE, 1994, 2191: 176―186.
[11]  孙宗光, 高赞明, 倪一清. 基于神经网络的损伤构件及损伤程度识别[J]. 工程力学, 2006, 23(2): 18―22. Sun Zongguang, Ko Janming, Ni Yiqing, Identification of damaged members and damage extent in bridge deck by neural network[J]. Engineering Mechanics, 2006, 23(2): 18―22. (in Chinese)
[12]  孙宗光, 栗燕娜, 石健, 伍雪南. 损伤状态下悬索桥静动态响应的模型试验研究[J]. 公路交通科技, 2009, 26(4): 59―63. Sun Zongguang, Li Yanna, Shi Jian, Wu Xuenan. Model test studies of static and dynamic responses of suspension bridge under damage conditions[J]. Journal of Highway and Transportation Research and Development, 2009, 26(4): 59―63. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133