全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

兰姆波在裂纹处的模态转换及散射特性研究

DOI: doi:10.6052/j.issn.1000-4750.2012.12.0982, PP. 21-29

Keywords: 裂纹,兰姆波,模态转换,散射矩阵,模态分离,交互作用

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文采用散射矩阵表征兰姆波在缺陷处的模态转换和散射特性,研究了S0模态兰姆波与亚波长级槽形裂纹的交互作用.由板中导波模态位移场的特性,提出了只存在零阶模态时的模态分离方法.求解了S0模态在不同尺寸裂纹处的多模态散射矩阵.结果表明,S0模态入射到裂纹时,散射波动场周向分布不均,与入射角度相关;散射特征的强弱由裂纹长度决定,长度越短,散射特征越明显;各散射模态的能量分配由裂纹的深度决定,随着裂纹深度增加,散射的S0和SH0模态能量增加,而A0模态先增加后急剧减小.

References

[1]  Sohn H, Kim S B. Development of dual PZT transducers for reference-free crack detection in thin plate structures[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2010, 57(1): 229―240.
[2]  Michaels J E, Lee S J, Hall J S, et al. Multi-mode and multi-frequency guided wave imaging via chirp excitations[C]// Health Monitoring of Structural and Biological Systems 2011, 2011: 798401.
[3]  Leonard K R, Hinders M K. Multi-mode Lamb wave tomography with arrival time sorting[J]. Journal of the Acoustical Society of America, 2005, 117(4): 2028―2038.
[4]  Simonetti F. Multiple scattering: The key to unravel the sub-wavelength world from the far-field pattern of a scattered wave[J]. Physical Review E, 2006, 73: 036619.
[5]  Alleyne D N, Cawley P. The interaction of Lamb wave with defects[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1992, 39(3): 381―397.
[6]  Cho Y H, Rose J L. A boundary element solution for a mode conversion study on the edge reflection of Lamb waves[J]. Journal of the Acoustical Society of America, 1996, 99(4): 2097―2109.
[7]  Cho Y H, Hongerholt D D, Rose J L. Lamb wave scattering analysis for reflector characterization[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1997, 44(1): 44―52.
[8]  Castaings M, Clezio E L, Hosten B. Modal decomposition method for modeling the interaction of Lamb waves with cracks[J]. Journal of the Acoustical Society of America, 2002, 112(6): 2567―2582.
[9]  Gunawan A, Hirose S. Mode-exciting method for lamb wave-scattering analysis[J]. Journal of the Acoustical Society of America, 2004, 115(3): 996―1005.
[10]  McKeon J C P, Hinders M K. Lamb wave scattering from a through hole[J]. Journal of Sound and Vibration, 1999, 224(5): 843―862.
[11]  Wang Xiaomin, Ying Chongfu. Scattering of Lamb waves by a circular cylinder[J]. Journal of the Acoustical Society of America, 2001, 110(4): 1752―1763.
[12]  Diligent O, Lowe M J S. Reflection of the S0 Lamb mode from a flat bottom circular hole[J]. Journal of the Acoustical Society of America, 2005, 118(5): 2869―2879.
[13]  Cegla F B, Rohde A, Veidt M. Analytical prediction and experimental measurement for mode conversion and scattering of plate waves at non-symmetric circular blind holes in isotropic plates[J]. Wave Motion, 2008, 45(3): 162―177.
[14]  Zhang Jie, Drinkwater B W, Wilcox P D. Defect characterization using an ultrasonic array to measure the scattering coefficient matrix[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2008, 55(10): 2254―2265.
[15]  Wilcox P D, Velichko A. Efficient frequency-domain finite element modeling of two-dimensional elastodynamic scattering[J]. Journal of the Acoustical Society of America, 2010, 127(1): 155―165.
[16]  Velichko A, Wilcox P D. Efficient finite element modeling of elastodynamic scattering from near surface and surface-breaking defects[J]. Review of Progress in Quantitative Nondestructive Evaluation, 2011, 1335: 59―66.
[17]  Moreau L, Caleap M, Wilcox P D. Scattering of guided waves by through-thickness cavities with irregular shapes[J]. Wave Motion, 2011, 48(7): 586―602.
[18]  Moreau L, Caleap M, Velichko A, et al. Scattering of guided waves by flat-bottomed cavities with irregular shapes[J]. Wave Motion, 2012, 49(2): 375―87.
[19]  Moreau L, Velichko A, Wilcox P D. Accurate finite element modeling of guided wave scattering from irregular defects[J]. NDT & E International, 2012, 45(1): 46―54.
[20]  Lu Ye, Ye Lin, Su Zhongqing, et al. Quantitative evaluation of crack orientation in aluminum plates based on lamb waves[J]. Smart Materials and Structures, 2007, 16(5): 1907―1914.
[21]  Lu Ye, Ye Lin, Su zhongqing, et al. Quantitative assessment of through-thickness crack size based on Lamb wave scattering in aluminum plates[J]. NDT & E International, 2008, 41(1): 59―68.
[22]  Hayashi T, Kawashima K. Single mode extraction from multiple modes of lamb wave and its application to defect detection[J]. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2003, 46(4): 620―626.
[23]  Xu Kailiang, Ta Dean, Wang Weiqi. Multiridge-based analysis for separating individual modes from multimodal guided wave signals in long bones[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2010, 57(11): 2480―2490.
[24]  Xu Kailiang, Ta Dean. Mode separation of Lamb waves based on dispersion compensation method[J]. Journal of the Acoustical Society of America, 2012, 131(4): 2714―2722.
[25]  Rajic N, Davis C, Thomson A. Acoustic-wave-mode separation using a distributed Bragg grating sensor[J]. Smart Materials and Structures, 2009, 18(12): 1―9.
[26]  郑阳, 何存富, 周进节, 等. 超声兰姆波斜入射裂纹时的散射特性[J]. 机械工程学报, 2013, 49(4): 6―12. Zheng Yang, He Cunfu, Zhou Jinjie, et al. Characteristic of Lamb wave at crack with oblique incident[J]. Journal of Mechanical Engineering, 2013, 49(4): 6―12. (jin Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133