全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

超细晶粒对纳晶材料断裂韧性的影响

, PP. 229-233

Keywords: 纳米晶体材料,超细晶粒,位错,断裂韧性,应力强度因子,裂纹

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究纳米晶体材料的断裂韧性,该文建立了一个包含两种晶粒的材料模型:超细晶粒(2nm~4nm)和普通纳晶晶粒(20nm~100nm)。超细晶粒可以看作普通纳晶晶粒三晶交的组成部分,并称包含超细晶粒的三晶交为超级三晶交,且均匀地分布在普通纳晶的基体中。裂纹尖端的应力集中会引起晶间滑移,晶间滑移又会导致超级三晶交处刃型位错的产生。该文研究了超级三晶交处的位错对临界应力强度因子的影响,结果表明超细晶粒的存在有效地提高了纳米晶体材料的断裂韧性。

References

[1]  Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Progress Materials Science, 2006, 51(4): 427―556.
[2]  Dao M, Lu L, Asaro R J, et al. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals [J]. Acta Mater, 2007, 55(12): 4041―4065.
[3]  王兆希, 施惠基. 面外约束对韧性材料的断裂韧度的影响[J]. 工程力学, 2007, 24(11): 19―24.
[4]  Wang Zhaoxi, Shi Huiji. Effect of out-of-plane constraint on ductile fracture toughness [J]. Engineering Mechanics, 2007, 24(11): 19―24. (in Chinese)
[5]  杨圣奇, 蒋昱州, 温森. 两条断续预制裂纹粗晶大理岩强度参数的研究[J]. 工程力学, 2008, 25(12): 127―134.
[6]  Yang Shengqi, Jiang Yuzhou, Wen Sen. Study on the strength parameters of coarse marble with two pre-existing cracks [J]. Engineering Mechanics, 2008, 25(12) : 127―134. (in Chinese)
[7]  Youssef K M, Scattergood R O, Murty K L, et al. Ultrahigh strength and high ductility of bulk nanocrystalline copper [J]. Applied Physics Letters, 2005, 87(9): 091904-1―091904-3.
[8]  Gleiter H. Our thoughts are ours, their ends none of our own: Are there ways to synthesize materials beyond the limitations of today [J]. Acta Mater, 2008, 56(19): 5875―5893.
[9]  Satta A, Pisanu E, Colombo L, et al. Microstructure evolution at a triple junction in polycrystalline silicon [J]. J Phys Condens Matter, 2002, 14: 13003―13008.
[10]  Trelewicz J R, Schuh C A. The Hall-Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation [J]. Acta Mater, 2007, 55(17): 5948―5958.
[11]  Bobylev S V, Mukherjee A K, Ovid’ko I A, et al. Effects of intergrain sliding on crack growth in nanocrystalline materials [J]. International Journal of Plasticity, 2010, 26(11): 1629―1644.
[12]  Fedorov A A, Gutkin M Y, Ovid’ko I A. Transformations of grain boundary dislocation pile-ups in nano-and polycrystalline materials [J]. Acta Mater, 2003, 51(4): 887―898.
[13]  Bobylev S V, Mukherjee A K, Ovid’ko I A. Emission of partial dislocations from amorphous intergranular boundaries in deformed nanocrystalline ceramics [J]. Scripta Mater, 2009, 60(1): 36―39.
[14]  Szlufarska I, Nakano A, Vashista P A Crossover in the mechanical response of nanocrystalline ceramics [J]. Science, 2005, 309: 911―914.
[15]  Wang Y, Li J, Hamza A V, et al. Ductile crystalline-amorphous nanolaminates [J]. Proceedings of the National Academy of Sciences, 2007, 104: 11155―11160.
[16]  Yang Z Y, Lu Z X, Zhao Y P. Shape effects on the yield stress and deformation of silicon nanowires: A molecular dynamics simulation [J]. Journal of Applied Physics, 2009, 106: 023537-1―023537-6.
[17]  Asaro R J, Krysl P, Kad B. Deformation mechanism transitions in nanoscale fcc metals [J]. Philos Mag Lett, 2003, 83(12): 733―743.
[18]  Zhu B, Asaro R J, Krysl P, et al. Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals [J]. Acta Mater, 2005, 53(18): 4825―4838.
[19]  Zhang T Y, Li J C M. Image forces and shielding effects of an edge dislocation near a finite length crack [J]. Acta Metall Mater, 1991, 39(11): 2739―2744.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133