全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

双层微梁固有特性的尺寸效应

, PP. 223-228

Full-Text   Cite this paper   Add to My Lib

Abstract:

微尺寸梁存在明显尺寸效应,应变梯度理论可以描述这种尺寸效应。该文基于修正偶应力理论,应用双层梁与单层梁的等效关系,给出了双层微梁的动力学模型,具体求解了简支双层微梁的固有频率,并分析了微梁特征尺寸及双材料参数对双层微梁固有特性的影响规律。结果表明,当双层微梁的厚度接近材料内秉特征尺寸参数时,其固有频率值明显大于传统理论下的值;当双层微梁的厚度远大于材料内秉特征尺寸时,其固有频率值与传统理论下的值基本一致。双层微梁无量纲固有频率表现出明显尺寸效应,并随双材料参数的改变表现出一定的差异。当一层梁厚度远大于另一层厚度时,双层微梁可简化为单层微梁。

References

[1]  (上接第214页)
[2]  陈光, 洪杰, 马艳红. 航空燃气涡轮发动机结构[M]. 北京: 北京航空航天大学出版社, 2010: 307―308.
[3]  Chen Guang, Hong Jie, Ma Yanhong. Structure of aero gas turbine engines [M]. Beijing: BUAA Press, 2010: 307―308. (in Chinese)
[4]  Limmer L, Nowell D, Hills D A. A combined testing and modeling approach to the prediction of the fretting fatigue performance of splined shafts [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2001, 215(2): 105―112.
[5]  李俊慧, 马艳红, 洪杰. 转子系统套齿结构动力学设计方法研究[J]. 航空发动机, 2009, 35(4): 36―39
[6]  Li Junhui, Ma Yanhong, Hong Jie. Dynamic design method of spline joint structure for rotor system. [J] Aero-engine, 2009, 35(4): 36―39. (in Chinese)
[7]  刘延柱, 陈立群. 非线性振动[M]. 北京: 高等教育出版社, 2001: 59―61.
[8]  Liu Yanzhu, Chen Liqun. Nonlinear vibration [M]. Beijing: Higher Education Press, 2001: 59―61. (in Chinese)
[9]  Kilho Eom, Harold S Park, Dae Sung Yoon, Taeyun Kwon. Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles [J]. Physics Reports, 2011, 503(4): 115―163.
[10]  Anja Boisen, Søren Dohn, Stephan Sylvest Keller, Silvan Schmid, Maria Tenje. Cantilever-like micromechanical sensors [J]. Reports on Progress in Physics, 2011, 74(3): 36101―36130.
[11]  Lam D C C, Yang F, Chong A C M, et al. Experiments and theory in strain gradient elasticity [J]. Journal of the Mechanics and Physics of Solids, 2003, 51(8): 1477―1508.
[12]  郭香华, 方岱宁, 李喜德. 用电子散斑法对纯镍薄片弯曲变形的测量[J]. 力学与实践, 2005, 27(2): 22―25. Guo Xianghua, Fang Daining, Li Xide. Measurement of deformation of pure Ni foils by speckle pattern interferometry [J]. Mechanics in Engineering, 2005, 27(2): 22―25. (in Chinese)
[13]  Toupin R A. Elastic materials with couple-stresses [J]. Archive for Rational Mechanics and Analysis, 1962, 11(1): 385―414.
[14]  Mindlin R D. Micro-structure in linear elasticity [J]. Archive for Rational Mechanics and Analysis, 1964, 16(1): 51―78.
[15]  Yang F, Chong A C M, Lam D C C, et al. Couple stress based strain gradient theory for elasticity [J]. International Journal of Solids and Structures, 2002, 39(10): 2731―2743.
[16]  Park S K, Gao X L. Bernoulli-Euler beam model based on a modified couple stress theory [J]. Journal of Micromechanics and Microengineering, 2006, 16(11): 2355―2359.
[17]  Kong S L, Zhou S J, Nie Z F, Wang K. The size-dependent natural frequency of Bernoulli-Euler micro-beams [J]. International Journal of Engineering Science, 2008, 46(4): 427―437.
[18]  Kong S L, Zhou S J, Nie Z F, Wang K. Static and dynamic analysis of micro beams based on strain gradient elasticity theory [J]. International Journal of Engineering Science, 2009, 47(4): 487―498.
[19]  Wang Binglei, Zhao Junfeng, Zhou Shenjie. A micro scale Timoshenko beam model based on strain gradient elasticity theory [J]. European Journal of Mechanics A/Solids, 2010, 29(4): 591―599.
[20]  袁明权. 硅基微机械加工技术[J]. 半导体技术, 2001, 26(8): 6―10. Yuan Mingquan. Micro-machining based on silicon [J]. Semiconductor Technology, 2001, 26(8): 6―10. (in Chinese)
[21]  刘月明, 田维坚, 张少君. 硅微机械悬臂梁红外辐射热探测技术的研究[J]. 光子学报, 2004, 33(3): 371―374. Liu Yueming, Tian Weijian, Zhang Shaojun. Study on infrared detection techniques using the micromechanical silicon cantilever [J]. Acta Photonica Sinica, 2004, 33(3): 371―374. (in Chinese)
[22]  Chuang T J, Lee S. Elastic flexure of bilayered beam subject to strain differentials [J]. Journal of Materials Research, 2000, 15(12): 2780―2788.
[23]  Zhang Nenghui, Chen Jianzhong. Elastic bending analysis of bilayered beams by an alternative two-variable method [J]. European Journal of Mechanics A/Solids, 2009, 28(2): 284―288.
[24]  Zhang N H, Meng W L, Aifantis E C. Elastic bending analysis of bilayered beams containing a gradient layer by an alternative two-variable method [J]. Composite Structures, 2011, 93(12): 3130―3139.
[25]  李莉, 陈万吉, 郑楠. 修正偶应力理论层合薄板稳定性模型及尺度效应[J]. 工程力学, 2013, 30(5): 1―7. Li Li, Chen Wanji, Zheng Nan. Model of composite laminated thin plate based on modified couple stress theory and buckling analysis of scale effects [J]. Engineering Mechanics, 2013, 30(5): 1―7. (in Chinese)
[26]  聂志峰, 周慎杰, 王凯, 孔胜利. 应变梯度弹性理论 C 1自然邻近伽辽金法[J]. 工程力学, 2009, 26(9): 10―15. Nie Zhifeng, Zhou Shenjie, Wang Kai, Kong Shengli. C 1 natural neighbor Galerkin method for strain gradient elasticity [J]. Engineering Mechanics, 2009, 26(9): 10―15. (in Chinese)
[27]  聂志峰, 周慎杰, 韩汝军, 肖林京, 王凯. 应变梯度弹性理论下微构件尺寸效应的数值研究[J]. 工程力学, 2012, 29(6): 38―46. Nie Zhifeng, Zhou Shenjie, Han Rujun, Xiao Linjing, Wang Kai. Numerical study on size effects of the microstructures based on strain gradient elasticity [J]. Engineering Mechanics, 2012, 29(6): 38―46. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133