全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

基于多边形比例边界有限元的复合材料裂纹扩展模拟

, PP. 1-7

Keywords: 断裂力学,裂纹扩展,比例边界有限元,网格重剖分,应力强度因子

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文采用近年提出的多边形比例边界有限元(PolygonScaledBoundaryFiniteElements,PSBFE),结合基于拓扑的局部网格重剖分方法,首次模拟了层状复合材料交界面、不同弹性模量的圆形夹杂对复合材料裂纹扩展的影响。结果表明,该文方法可以有效模拟复合材料的裂纹扩展,算例的结果同现有文献的实验数据和数值模拟结果吻合良好,采用不同网格密度和不同裂纹扩展步长对计算结果影响不大。基于SBFEM的PSBFE可以半解析求解裂纹尖端应力奇异性,具有比FEM更高的精度。另一方面,同现有基于SBFEM的裂纹扩展方法相比,基于拓扑的局部网格重剖分的PSBFE可以处理任意复杂的二维模型,具有更好的通用性。

References

[1]  徐芳, 陈振中. A357铸造铝合金疲劳裂纹扩展行为以及裂纹偏折[J]. 工程力学, 2011, 28(10): 197―201, 242.
[2]  Xu Fang, Chen Zhenzhong. The fatigue crack propagation behavior and crack deflection of A357 casting aluminum alloys [J]. Engineering Mechanics, 2011, 28(10): 197―201, 242. (in Chinese)
[3]  Jajam K C, Tippur H V. An experimental investigation of dynamic crack growth past a stiff inclusion [J]. Engineering Fracture Mechanics, 2011, 78(6): 1289―1305.
[4]  Tamate O. The effect of a circular inclusion on the stresses around a line crack in a sheet under tension [J]. International Journal of Fracture, 1968, 4(3): 257―266.
[5]  侯密山, 徐国强, 胡玉林. 反平面电弹性偏折裂纹的一个解析解[J]. 工程力学, 2013, 30(9): 76―80.
[6]  Hou Mishan, Xu Guoqiang, Hu Yulin. An analytical solution for problem of antiplane kink cracks in piezoelectric material [J]. Engineering Mechanics, 2013, 30(9): 76―80. (in Chinese)
[7]  蔡永昌, 朱合华. 裂纹扩展过程模拟的无网格MSLS方法[J]. 工程力学, 2010, 27(7): 21―26.
[8]  Cai Yongchang, Zhu Hehua. Simulation of crack growth by the MSLS method [J]. Engineering Mechanics, 2010, 27(7): 21―26. (in Chinese)
[9]  茹忠亮, 朱传锐, 赵洪波. 裂纹扩展问题的改进XFEM算法[J]. 工程力学, 2013, 29(7): 12―16, 23.
[10]  Ru Zhongliang, Zhu Chuanrui, Zhao Hongbo. An improved algorithm of XFEM for the crack propagation problems. Engineering Mechanics, 2013, 29(7): 12―16, 23. (in Chinese)
[11]  Bäker M. Finite element crack propagation calculation using trial cracks [J]. Computational Materials Science, 2008, 43(1): 179―183.
[12]  Lei J, Yang Q S, Wang Y S, et al. An investigation of dynamic interaction between multiple cracks and inclusions by TDBEM [J]. Composites Science and Technology, 2009, 69(7): 1279―1285.
[13]  Tran A B, Yvonnet J, He Q C, et al. A multiple level set approach to prevent numerical artefacts in complex microstructures with nearby inclusions within XFEM [J]. International Journal for Numerical Methods in Engineering, 2011, 85(11): 1436―1459.
[14]  Wolf J P, Song C. Dynamic‐stiffness matrix in time domain of unbounded medium by infinitesimal finite element cell method [J]. Earthquake Engineering & Structural Dynamics, 1994, 23(11): 1181―1198.
[15]  Deeks A J, Augarde C E. A meshless local Petrov-Galerkin scaled boundary method [J]. Computational Mechanics, 2005, 36(3): 159―170.
[16]  Song C M, Wolf J P. Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method [J]. Computers & Structures, 2002, 80(2): 183―197.
[17]  Chidgzey S R, Deeks A J. Determination of coefficients of crack tip asymptotic fields using the scaled boundary finite element method [J]. Engineering Fracture Mechanics, 2005, 72(13): 2019―2036.
[18]  Yang Z J, Deeks A J, Hao H. Transient dynamic fracture analysis using scaled boundary finite element method: a frequency-domain approach [J]. Engineering Fracture Mechanics, 2007, 74(5): 669―687.
[19]  Song C, Tin-Loi F, Gao W. A definition and evaluation procedure of generalized stress intensity factors at cracks and multi-material wedges [J]. Engineering Fracture Mechanics, 2010, 77(12): 2316―2336.
[20]  Ooi E T, Song C M, Tin-Loi F, et al. Polygon scaled boundary finite elements for crack propagation modeling [J]. International Journal for Numerical Methods in Engineering, 2012, 91(3): 319―342.
[21]  Ooi E T, Song C M, Tin-Loi F, et al. Automatic modelling of cohesive crack propagation in concrete using polygon scaled boundary finite elements [J]. Engineering Fracture Mechanics, 2012, 93: 13―33.
[22]  Song C M, Wolf J P. Body loads in scaled boundary finite-element method [J]. Computer Methods in Applied Mechanics and Engineering, 1999, 180(1/2): 117―135.
[23]  Yang Z J. Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method [J]. Engineering Fracture Mechanics, 2006, 73(12): 1711―1731.
[24]  Erdogan F. Critical analysis of crack propagation laws [J]. Journal of Basic Engineering, 1963, 85(4): 528―534.
[25]  McNaney J M, Cannon R M, Ritchie R O. Near-interfacial crack trajectories in metal-ceramic layered structures [J]. International Journal of Fracture, 1994, 66(3): 227―240.
[26]  Yan Y, Park S H. An extended finite element method for modeling near-interfacial crack propagation in a layered structure [J]. International Journal of Solids and Structures, 2008, 45(17): 4756―4765.
[27]  Yang L, Chen Q, Li Z. Crack-inclusion interaction for mode II crack analyzed by Eshelby equivalent inclusion method [J]. Engineering Fracture Mechanics, 2004, 71(9): 1421―1433.
[28]  Williams R C, Phan A V, Tippur H V, et al. SGBEM analysis of crack-particle(s) interactions due to elastic constants mismatch [J]. Engineering Fracture Mechanics, 2007, 74(3): 314―331.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133