全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

软硬交错金属空心球泡沫动力学性能研究

, PP. 245-249

Keywords: 金属空心球泡沫,点阵结构,软硬空心球分布,冲击,LS-DYNA

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过控制点阵结构中不同阵点位置空心球的软硬程度建立了交错金属空心球泡沫模型。在此基础上,对比研究了不同冲击条件下,均匀和各种交错金属空心球泡沫的动力学响应特性。重点分析了软硬空心球排布方式对金属空心球泡沫动力学性能的影响。研究结果表明,通过对软硬空心球排布方式的控制,材料可以在一定范围内根据外载条件进行自主调节,以控制金属空心球泡沫内的应力分布,提高了金属空心球泡沫的能量吸收效率。软硬交错空心球模型的建立为实现金属空心球泡沫的自适应设计提供了新的思路。

References

[1]  Gibson L J, Ashby M F. Cellular solids: Structure and properties [M]. 2nd ed. Cambridge: Cambridge University Press, 1997.
[2]  Lu G X, Yu T X, Energy Absorption of structures and materials [M]. Cambridge: CRC Press, Woodhead Publishing Limited, 2003.
[3]  潘艺, 胡时胜, 凤仪, 朱震刚. 泡孔尺寸对开孔泡沫铝合金力学性能的影响[J]. 工程力学, 2003, 20(4): 171―175.
[4]  Pan Yi, Hu Shisheng, Feng Yi, Zhu Zhengang. Cell-size effect on mechanical property of open-cell aluminum alloy foam [J]. Engineering Mechanics, 2003, 20(4): 171―175. (in Chinese)
[5]  余为, 辛美娟, 李慧剑, 梁希. 薄壁金属空心球结构压缩力学性能研究[J]. 实验力学, 2012, 27(3): 377―384.
[6]  Yu Wei, Xin Meijuan, Li Huijian, Liang Xi. Study of mechanical properties of thin-walled MHSS under compression [J]. Journal of Experimental Mechanics, 2012, 27(3): 377―384. (in Chinese)
[7]  吴鹤翔, 刘颖, 张新春, 杨帅. 点阵结构对具有密度梯度的三维空心球泡沫冲击性能的影响[J]. 工程力学, 2011, 28(12): 213―220.
[8]  Wu Hexiang, Liu Ying, Zhang Xinchun, Yang Shuai. The influence of lattice structures on the dynamic performance of 3D metal hollow sphere foams with density gradient [J]. Engineering Mechanics, 2011, 28(12): 213―220. (in Chinese)
[9]  Ruan H H, Gao Z Y, Yu T X. Crushing of thin-walled spheres and sphere arrays [J]. International Journal of Mechanical Sciences, 2006, 48: 117―133.
[10]  Karagiozova D, Yu T X, Gao Z Y, Modelling of MHS cellular solid in large strains [J]. International Journal of Mechanical Sciences, 2006, 48: 1273―1286.
[11]  Dong X L, Gao Z Y, Yu T X. Dynamic crushing of thin-walled spheres: An experimental study [J]. International Journal of Impact Engineering, 2008, 35: 717―726.
[12]  Gupta N. A functionally graded syntactic foam material for high energy absorption under compression [J]. Material Letters, 2007, 61: 979―982.
[13]  Liu Y, Wu H X, Wang B. Gradient design of metal hollow sphere (MHS) foams with density gradients [J]. Composites: Part B, 2012, 43: 1346―1352.
[14]  Zhang X W. Conceptual study of adaptive energy absorbers [D]. Hong Kong: Hong Kong University of Science and Technology, 2009.
[15]  Gibson L G. Mechanical behaviour of metallic foams [J]. Annual Reviews of Materials Science, 2000, 30: 191―227.
[16]  LSTC. LS-DYNA keyword user’s manual [Z]. Livermore Software Technology Corporation, 2007.
[17]  Kooistra G W, Deshpande V S, Wadley H N G. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminum [J]. Acta Materialia, 2004, 52: 4229―4237.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133