全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

基于变形及固有频率测量的纤维增强复合材料风机叶片等效弹性参数反求方法

, PP. 192-198

Keywords: 纤维增强复合材料,风机叶片,等效正交各向异性弹性参数,反求,数字图像相关,基于可变容限技术的遗传算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文建立了一种基于变形及固有频率测量的风机叶片等效弹性参数反求方法。该反求方法通过构造偏差方程将弹性参数反求工作转化为函数优化问题。运用了数字图像相关算法测试叶片在静载及冲击载荷下的位移信息,并采用基于可变容限技术的遗传算法优化偏差函数,求解等效弹性参数。计算的等效弹性参数得到了叶片结构静载试验数据的验证,该弹性参数用于计算叶轮组的模态信息,该模态信息与单叶片的模态相对应。

References

[1]  Scott M, Fenves G, McKenna F, Filippou F. Software patterns for nonlinear beam-column models [J]. Journal of Structural Engineering, 2008, 134(4): 562―571.
[2]  禚一, 李忠献. 钢筋混凝土纤维梁柱单元实用模拟平台[J]. 工程力学, 2011, 28(4): 102―108, 127.
[3]  Zhuo Yi, Li Zhongxian. A practical simulation platform of reinforced concrete fiber beam-column element [J]. Engineering Mechanics, 2011, 28(4): 102―108, 127. (in Chinese)
[4]  Park R, Paulay T. Reinforced concrete structures [M]. New York: John Wiley & Sons, 1975.
[5]  Zhao X M, Wu Y F, Leung A Y, Lam H F. Plastic hinge length in reinforced concrete flexural members [J]. Procedia Engineering, 2011, 14: 1266―1274.
[6]  李祖华. 风力发电现状和复合材料在风机叶片上的应用(2)[J]. 高科技纤维与应用, 2008, 33(3): 30―35.
[7]  Li Zuhua. Development status of wind power-generation and application of composites in wind turbine blade (2) [J]. Hi-Tech Fiber & Application, 2008, 33(3): 30―35. (in Chinese)
[8]  靳交通, 梁鹏程, 曾竟成, 等. 复合材料风电叶片有限元刚度分析[J]. 武汉理工大学学报, 2009, 31(21): 133―136.
[9]  Jin Jiaotong, Liang Pengcheng, Zeng Jingcheng, et al. Finite element analysis for composite material wind rotor blade stiffness [J]. Journal of Wuhan University of Technology, 2009, 31(21): 133―136. (in Chinese)
[10]  潘利剑, 袁健, 彭超义, 等. 复合材料风电叶片结构截面刚度有限元分析[J]. 武汉理工大学学报, 2009, 31(21): 129―132.
[11]  Pan Lijian, Yuan Jian, Peng Chaoyi, et al. Finite element analysis for section stiffness of composite wind turbine blade [J]. Journal of Wuhan University of Technology, 2009, 31(21): 129―132. (in Chinese)
[12]  ASTM E 1876-09, Standard test method for dynamic Young’s modulus, shear modulus, and Poisson’s ratio by impulse excitation of vibration [S]. 2009.
[13]  GB/T 15777-1995, 木材顺纹抗压弹性模量测定方法[S]. 北京: 中国计划出版社, 1995.
[14]  GB/T 15777-1995, Method for determination of the modulus of elasticity in compressive parallel to grain of wood [S]. Beijing: China Planning Press, 1995. (in Chinese)
[15]  Maniatty A, Zabaras N, Stelson K. Finite element analysis of some inverse elasticity problems [J]. Journal of Engineering Mechanics, 1989, 115(6): 1303―1317.
[16]  曹银锋, 钟志华, 卢远志. 仿真用材料弹性参数的反求方法[J]. 湖南大学学报: 自然科学版, 2002, 29(1): 74―79.
[17]  Cao Yinfeng, Zhong Zhihua, Lu Yuanzhi. Inverse method for determination of material parameters employed in computer simulation [J]. Journal of Hunan University (Natural Sciences Edition), 2002, 29(1): 74―79. (in Chinese)
[18]  曾攀. 有限元分析及应用[M]. 北京: 清华大学出版社, 2004: 144―202.
[19]  Zeng Pan. Finite element analysis and application [M]. Beijing: Tsinghua University Press, 2004: 144―202. (in Chinese)
[20]  Zienkiewicz O C, Taylor R L, Zhu J Z. The finite element method: its basis and fundamentals [M]. 6th ed. Burlington: Butterworth - Heinemann, 2005: 187―228.
[21]  Zhao J, Zeng P, Lei L, et al. Initial guess by improved population-based intelligent algorithms for large inter-frame deformation measurement using digital image correlation [J]. Optics and Lasers in Engineering, 2012, 50(3): 473―490.
[22]  张蕊, 贺玲凤. 数字图像相关法测量聚碳酸酯板应力强度因子[J]. 工程力学, 2012, 29(12): 22―27.
[23]  Zhang Rui, He Lingfeng. Evaluating stress intensity factor of polycarbonate using digital image correlation [J]. Engineering Mechanics, 2012, 29(12): 22―27. (in Chinese)
[24]  孙伟, 何小元, 胥明, 等. 数字图像相关方法在膜材拉伸试验中的应用[J]. 工程力学, 2007, 24(2): 34―38.
[25]  Sun Wei, He Xiaoyuan, Xu Ming, et al. Study on the tension test of membrane material using digital image correlation method [J]. Engineering Mechanics, 2007, 24(2): 34―38. (in Chinese)
[26]  Medina R, Garrido M. Improving impact-echo method by using cross-spectral density [J]. Journal of Sound and Vibration, 2007, 304(3): 769―778.
[27]  曲晓宁, 罗尧治, 郑君华. 基于改进遗传算法的预应力钢结构索张拉优化分析[J]. 工程力学, 2009, 26(9): 131―137.
[28]  Qu Xiaoning, Luo Yaozhi, Zheng Junhua. Optimal analysis of tensioning cables for prestressed steel structure based on improved genetic algorithm [J]. Engineering Mechanics, 2009, 26(9): 131―137. (in Chinese)
[29]  Zhao J, Wang L, Zeng P, et al. An effective hybrid genetic algorithm with flexible allowance technique for constrained engineering design optimization [J]. Expert Systems with Applications, 2012, 39(15): 6041―6051. (上接第184页)
[30]  Paulay T, Priestley M J N. Seismic design of reinforced concrete and masonry buildings [M]. New York: John Wiley & Sons, 1992.
[31]  Gomes A, Appleton J. Nonlinear cyclic stress-strain relationship of reinforcing bars including buckling [J]. Engineering Structure, 1997, 19(10): 822―826.
[32]  Brown J, Kunnath S K. Low cycle fatigue behavior of longitudinal reinforcement in reinforced concrete bridge columns [R]. MCEER Technical Report 00-0007, State University of New York, Buffalo, 2000.
[33]  Scott B D, Park R, Priestley M J N. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates [J]. ACI Journal, 1982, 79: 13―27.
[34]  Mazzoni S, McKenna F, Scott M H, Fenves GL, et al. Open system for earthquake engineering simulation (OpenSees): user manual [EB]. http: // opensees. berkeley.edu, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133