全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

力法非线性梁柱单元的合理单元长度划分

Keywords: 非线性有限元理论,数值模拟,力法非线性梁柱单元,积分点,单元长度

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对目前结构非线性分析中最常用的力法非线性梁柱单元模型,从理论上分析出了能消除其计算失真问题的合理单元长度及对应积分点数量。然后基于OpenSees有限元程序,使用该理论分析结果建立了一组单墩循环推倒试验的数值分析模型,通过加载点力-位移滞回曲线的对比分析和墩底截面曲率滞回曲线的对比分析验证了理论结果的正确性。结果表明:使用力法非线性梁柱单元模型进行结构的非线性数值分析时,其单元长度划分应根据积分点数量确定,确定原则应基于使单元屈服后变形增长的分布长度与塑性铰长度相等进行计算;在实际使用中,可利用等效塑性铰长度计算积分点数量与单元长度的关系,初步确定单元划分的合理长度;在保证单元长度与积分点数量的对应关系前提下,力法非线性单元的积分点数量越多,计算结果越稳定。

References

[1]  Federal Emergency Management Agency (FEMA). NEHRP guidelines for the seismic rehabilitation of building [S]. Report No.FEMA-273, Washington, D.C. 1997.
[2]  Zeris C A , Mahin S A. Analysis of reinforced concrete beam-columns under uniaxial excitation [J]. Journal of Structural Engineering, ASCE, 1988, 114(4): 804―820.
[3]  Spacone E, Filippou F C, Taucer F F. Fibre beamcolumn model for nonlinear analysis of R/C frames I: Formulation [J]. Earthquake Engineering and Structure Dynamic, 1996, 25(7): 711―725.
[4]  Neuenhofer A, Filippou F C. Evaluation of nonlinear frame finite-element models [J]. Journal of Structural Engineering, 1997, 123(7): 958―966.
[5]  Coleman J, Spacone E. Localization issues in force-based frame elements [J]. Journal of Structural Engineering, 2001, 127(11): 1257―1265.
[6]  Scott M H, Fenves G L. Plastic hinge integration methods for force-based beam-column elements [J]. Journal of Structural Engineering, 2006, 132(2): 244―252.
[7]  Correia1 A A, Almeida J P, Pinho R. Force-based versus displacement-based formulations in the cyclic nonlinear analysis of rc frames [C]// Proceedings of the 14th World Conference on Earthquake Engineering. Beijing, China. 2008. (参考文献[8]―[16]转第198页)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133