全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

基于应力三轴度的钢框架循环加载损伤分析

, PP. 146-155

Keywords: 钢结构,损伤准则,应力三轴度,低周大应变,循环加载,性能退化

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究在低周大应变循环作用下钢材损伤对钢构件及钢框架抗震性能的影响,该文在Bao-Wierzbicki的等效塑性应变与应力三轴度路径的基础上,提出了符合钢材微观机制的应力三轴度起始损伤准则。随后通过10组Q235钢板拉伸试验确定了钢材的损伤演化准则。为了验证这些准则在描述钢构件及框架损伤破坏方面的正确性与适用性,该文采用有限元软件ABAQUS对一组型钢梁、钢框架梁柱节点及一榀钢框架的典型循环加载试验进行了损伤模拟分析。分析结果显示,考虑损伤准则的有限元曲线与试验曲线吻合一致,能较为准确的描述钢构件及钢框架在循环加载下承载力与刚度退化的现象,并能直观地模拟各结构的损伤部位及损伤程度。该文研究为分析钢构件及钢框架在低周大应变循环作用下的性能退化提供较为便捷的方法。

References

[1]  ASTM A36 / A36M - 08, Standard specification for carbon structural steel [S]. USA: ASTM International, 2013. (上接第136页)
[2]  Demonceau J, Jaspart J. Experimental and analytical investigations on the response of structural building frames further to a column loss [C]. Texas: Proceedings of Structurs Congress, 2009: 1701―1810.
[3]  熊哲, 韩飞, 卢登, 等. 多高层钢框架结构构件重要性系数与鲁棒性的分析研究[C]. 第四届湖北省土木工程专业大学生科技创新论坛论文集, 湖北, 2011: 139―144. Xiong Zhe, Han Fei, Lu Deng, et al. Analysis of structure component importance coefficient and the robustness of the high-rise steel frame [C]. The Fourth Civil Engineering Students’s Cience Technology Innovation Forum of the Hubei Provincial, Hubei, 2011: 139―144. (in Chinese)
[4]  高扬. 鲁棒性定量计算中的构件重要性系数[D]. 上海: 上海交通大学, 2008. Gao Yang. Importance coefficients of components in quantitative evaluation of structural robustness [D]. Shanghai: Shanghai Jiao Tong University, 2008. (in Chinese)
[5]  黄靓, 李龙. 一种结构鲁棒性量化方法[J]. 工程力学, 2012, 29(8): 213―219. Huang Liang, Li Long. A quantification method of structural robustness [J]. Engineering Mechanics, 2012, 29(8): 213―219. (in Chinese)
[6]  李登. 基于鲁棒性的教学楼建筑受力性能分析[D]. 长沙: 湖南大学, 2011. Li Deng. Analysis of collapses of school buildings under earthquake in the view of robustness [D]. Changsha: Hunan University, 2011. (in Chinese)
[7]  Ricles J M, Mao C S, Lu L W, et al. Inelastic cyclic testing of welded unreinforced moment connections [J]. Journal of Structure Engineering, 2002, 128(4): 429―440.
[8]  Ruey Shyang Ju, Hung Jen Lee, Chen Chengcheng, et al. Experimental study on separating reinforced concrete infill walls from steel moment frames [J]. Journal of Constructional Steel Research, 2012, 71: 119―128.
[9]  廖芳芳. 钢材微观断裂判据研究及在节点延性断裂预测中的应用[D]. 上海: 同济大学, 2012.
[10]  Liao Fangfang. Study on micromechanical fracture criteria of structural steels and its applications to ductile fracture prediction of connections [D]. Shanghai: Tongji University, 2012. (in Chinese)
[11]  Wang Yuanqing, Zhou Hui, Shi Yongjiu, et al. Fracture prediction of welded steel connections using traditional fracture mechanics and calibrated micromechanics based models [J]. International Journal of Steel Structures, 2011, 11(3): 351―366.
[12]  ASTM A572 / A572M-12, Standard specification for high-strength low-alloy columbium-vanadium structural steel [S]. USA: ASTM International, 2012.
[13]  McClintock F A. A criterion of ductile fracture by the growth of holes [J]. Journal of Applied Mechanics, 1968, 35(2): 363―371.
[14]  Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stress fields [J]. Journal of the Mechanics and Physics of Solids, 1969, 17: 201―217.
[15]  Atkins A G. Fracture in forming [J]. Journal of Materials Processing Technology, 1996, 56(1/2/3/4): 609―618.
[16]  Hancock J W, Mackenzie A C. On the mechanisms of ductile failure in high-strength steels subjected to multi-axialstress-states [J]. Journal of the Mechanics and Physics of Solids, 1976, 24(2/3): 147―169.
[17]  Mirza M S, Barton D C, Church P. The effect of stress triaxiality and strain-rate on the fracture characteristics of ductile metals [J]. Journal of Material Science, 1996, 31(2): 453―461.
[18]  LeRoy G, Embury J D, Edward G, Ashby M F. A model of ductile fracture based on the nucleation and growth of voids [J]. Acta Metallurgica, 1981, 29(8): 1509―1522.
[19]  Rosa G L, Mirone G, Risitano A. Effect of stress triaxiality corrected plastic Row on ductile damage evolution in the framework of continuum damage mechanics [J]. Engineering Fracture Mechanics, 2001, 68(1): 417―434.
[20]  Yingbin Bao, Tomasz Wierzbicki. On fracture locus in the equivalent strain and stress triaxiality space [J]. International Journal of Mechanical Sciences, 2004, 46(1): 81―98.
[21]  Wierzbicki T, Xue L. On the effect of the third invariant of the stress deviator on ductile fracture [R]. Cambridge, MA, USA: MIT Impact and Crashworthiness Lab, 2005.
[22]  Xue L. Damage accumulation and fracture initiation in uncracked ductile solids under triaxial loading—Part I:Pressure sensitivity and Lode dependence [R]. Cambridge, MA, USA: MIT Impact and Crashworthiness Lab, 2005.
[23]  Yu H L, Jeong D Y. Application of a stress triaxiality dependent fracture criterion in the finite element analysis of unnotched Charpy specimens [J]. Theoretical and Applied Fracture Mechanics, 2010, 54(1): 54―62.
[24]  Lee Y W, Wierzbicki T. Quick Fracture Calibration for Industrial Use [R]. Cambridge, MA, USA: MIT Impact and Crashworthiness Lab, 2004.
[25]  Dassault Systemes Simulia Corp. ABAQUS Analysis User’s Manual Version 6.10 [M]. Providence, USA, RI, 2010.
[26]  GB/T 2975-1998, 钢及钢材产品力学性能试验取样位置及试样制备[S]. 北京: 中国标准出版社, 1998.
[27]  GB/T 2975-1998, Steel and steel products-Location and preparation of test pieces for mechanical testing [S]. Beijing: China Standard Press, 1998. (in Chinese)
[28]  GB/T 228.1-2010, 金属材料拉伸试验第一部分: 室温试验方法[S]. 北京: 中国标准出版社, 2010.
[29]  GB/T 228.1-2010, Metallic materials-Tensile testing-Part Ⅰ: Method of at room temperature [S]. Beijing: China Standard Press, 2010. (in Chinese)
[30]  郝际平, 陈绍蕃. 钢结构在循环荷载作用下的局部屈曲和低周疲劳的试验研究[J]. 土木工程学报, 1996(6): 40―52.
[31]  Hao Jiping, Chen Shaofan. Experimental study of local buckling and low cyclic fatigue of steel structure under cyclic load [J]. Journal of Civil Engineering, 1996(6): 40―52. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133