全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

弹性介质中任意形状细长曲梁的Cosserat模型

, PP. 77-82

Keywords: 弹性介质中的曲梁,Kirchhoff动力学比拟,Cosserat弹性杆模型,Lyapunov稳定性,欧拉载荷

Full-Text   Cite this paper   Add to My Lib

Abstract:

Kirchhoff动力学比拟理论使动力学的概念和方法进入弹性杆力学的研究领域。Cosserat弹性杆模型考虑Kirchhoff模型所忽略的截面剪切变形、中心线伸缩变形和分布载荷等因素,更适合工程中大变形细长梁的动力学建模。该文以弹性介质中任意形状中心线的圆截面细长曲梁为对象,基于Cosserat模型建立以截面的姿态角和挠度为未知变量的精确动力学方程。其直梁小变形特例为弹性介质中的Timoshenko梁。将Lyapunov运动稳定性理论的时间变量置换为空间变量,可用于判断梁的平衡稳定性。以弹性介质中轴向受压Timoshenko梁为例,讨论梁平衡状态的Lyapunov稳定性与欧拉失稳传统概念之间的区别和相互联系。导致梁屈曲的欧拉载荷可利用满足Lyapunov稳定性梁的受扰挠性线和端部约束条件导出。在一次近似条件下证明空间域内的Lyapunov稳定性和欧拉稳定性是时间域内的Lyapunov稳定性的必要条件。

References

[1]  A E H. A treatise on mathematical theory of elasticity [M]. 4th ed. New York: Dover, 1927.
[2]  弹性细杆的非线性力学: DNA力学模型的理论基础[M]. 北京: 清华大学清华Springer出版社, 2006[2] Liu Yanzhu. Nonlinear mechanics of thin elastic rod [M]. Beijing: Tsing Hua University Press / Springer, 2006. (in Chinese)
[3]  Y Z, Zu J W. Stability and bifurcation of helical equilibrium of a thin elastic rod [J]. Acta Mechanica, 2004, 167(1/2): 29―39.
[4]  Y Z, Sheng L W. Stability and vibration of a helical rod with circular cross section in a viscous medium [J]. Chinese Physics, 2007, 16(4): 891―896.
[5]  Y Z, Sheng L W. Stability and vibration of a helical rod constrained by a cylinder [J]. Acta Mechanica Sinica, 2007, 23(2): 215―219.
[6]  潘家祯. 拱形跨越管线边值问题的数值解[J]. 工程力学, 2008, 25(3): 126―131.[6] Zhang Huimin, Pan Jiazhen. Numerical analysis of circular arch-span pipelines [J]. Engineering Mechanics, 2008, 25(3): 126―131. (in Chinese)
[7]  悬垂弹性细杆的几何形态[J]. 力学季刊, 2011, 32(3): 295―299.[7] Liu Yanzhu. The shape of a hanging thin elastic rod [J]. Chinese Quarterly of Mechanics. 2011, 32(3): 295―299 (in Chinese)
[8]  薛纭. 受圆柱面约束螺旋杆伸展为直杆的动力学分析[J]. 力学学报, 2011, 43(6): 1151―1156.[8] Liu Yanzhu, Xue Yun. Dynamical analysis of stretching process of helical rod to straight rod under constraint of cylinder [J], Acta Mechanica Sinica, 2011, 43(6): 1151―1156. (in Chinese)
[9]  S S. Nonlinear problems of elasticity [M]. New York: Springer, 1995.
[10]  R W, Wang C. Torsional vibration control and Cosserat dynamics of a drill-rig assembly [J]. Meccanica 2003, 38(1): 143―159.
[11]  D Q, Liu D S, Wang C H T. Nonlinear dynamic modeling for MEMS components via the Cosserat rod element approach [J]. Journal of Micromechanics and Microengineering, 2005, 15(6): 1334―1343.
[12]  D Q, Liu D, Wang C H T. Three dimensional nonlinear dynamics of slender structures: Cosserat rod element approach [J]. International Journal of Solids and Structures, 2006, 43(3/4): 760―783.
[13]  D Q, Tucker R W. Nonlinear dynamics of elastic rods using the Cosserat theory: Modelling and simulation [J]. Intern J Solids and Structures, 2008, 45(2): 460―477.
[14]  Yanzhu. On dynamics of elastic rod based on exact Cosserat model [J]. Chinese Physics B, 2009, 18(1): 1―8.
[15]  D A, Tucker R W. Practical applications of simple Cosserat methods [C]. Mechanics of Continua. Advances in Mechanics and Mathematics Berlin, Springer, 2010, 21: 87―98.
[16]  Yanzhu, Xue Yun. Stability analysis of a helical rod based on exact Cosserat model [J]. Applied Mathemaics and Mechanics, 2011, 32(5): 603―612.
[17]  宋敉淘. 预应力曲杆的Cosserat动力学模型[J]. 哈尔滨工业大学学报, 2012, 44(11): 1―6.[17] Cao Dengqing, Song Mitao. Dynamic modeling of prestressed curved Cosserat rods [J]. J Harbin Institute Technology, 2012, 44(11): 1―6 (in Chinese)
[18]  大变形轴向运动梁的精确动力学模型 [J]. 力学学报, 2012, 44(5): 832―838.[18] Liu Yanzhu. Exact dynamical model of axially moving beam with large deformation [J]. Acta Mechanica Sinica, 2012, 44(5): 832―838. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133