E, Delahay C, Sagaut P, Mary I, BenKhelil S, Guillen P. Numerical prediction of the unsteady ?ow and radiated noise from a 3-D lifting airfoil [C]. AIAA 2001-2133, 2001.
[2]
X, Garrec T L. Trailing edge noise from an isolated airfoil at a high Reynolds number [C]// Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference, Miami, Florida, AIAA 2009-3201, 2009.
[3]
崔尔杰, 周伟江, 等. 等速上仰翼型动态失速现象的研究[J]. 力学学报, 2004, 36(5): 569―576. Bai Peng, Cui Erjie, Zhou Weijiang, et al. Investigation of the dynamic stall about the picthing airfoil[J]. Acta Mechanica Sinica, 2004, 36(5): 569―576. (in Chinese)
[4]
H, Ogawa H. Shockwave boundary layer interaction control for wings and inlets [J]. Shock Waves, 2008(18): 89―96.
[5]
范宝春, 陈志华, 等. 翼型绕流电磁控制的实验和数值研究[J]. 物理学报, 2008, 57(2): 648―653. Chen Yaohui, Fan Baochun, Chen Zhihua, et al. Experimental and numerical investigations on the electro-magnetic control of hydrofoil wake [J]. Acta Physica Sinica, 2008, 57(2): 648―653. (in Chinese)
[6]
M B, Gregorek G M. Experimental study of airfoil performance with vortex generators [J]. Journal of Aircraft, 1987, 24(5): 305―309.
[7]
W, Crisler W P, Gustsfson G L. Afterbody drag reduction by vortex generators [R]. Reno, NV, AIAA 85-0354, 1985.
[8]
A M, Shah R K. Heat transfer surface enhancement through the use of longitudinal vortices: A review of recent progress [J]. Experimental Thermal and Fluid Science, 1995, 11(3): 295―309.
[9]
B J, Hingst W R. Flow structure in the wake of a wishbone Vortex Generator [J]. AIAA Journal, 1994, 32: 2234―2240.
[10]
G, Pape A L, Huberson S. Numerical study of ?ow separation control over a OA209 Airfoil using Deployable Vortex Generator [R]. AIAA 2011-1044, 2011.
[11]
乔志德, 宋文萍. 基于涡流发生器的翼型失速流动控制及雷诺数效应影响研究[J]. 实验力学. 2011, 26(3): 323―328. Hao Lishu, Qiao Zhide, Song Wenping. Investigation on airfoil stall flow controlling and Reynolds number effect based on a vortex generator [J]. Journal of Experimental Mechanics, 2011, 26(3): 323―328. (in Chinese)
[12]
Q, Liu C. LES for supersonic ramp control flow using MVG at Ma =2.5 and =1440 [R]. 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando, Florida, AIAA 2010-592, 2010.
[13]
F K, Li Q, Liu C. Microvortex generators in high-speed flow [J]. Progress in Aerospace Sciences, 2012, 53: 30―45.
[14]
李桦. 控制超临界翼型边界层分离的微型涡流发生器数值模拟[J]. 空气动力学学报, 2011, 29(4): 508―511. Shi Qing, Li Hua. Numerical simulation of boundary layer flow separation control for supercritical wing using micro-vortex generators [J]. Acta Aerodynamica Sinica, 2011, 29(4): 508―511. (in Chinese)
[15]
范宝春, 陈志华, 等. 沉浸边界法在湍流燃烧中的应用[J]. 自然科学进展, 2008, 18(10): 1181―1185. Ying Zhanfeng, Fan Baochun, Chen Zhihua, et al. The application of Immersed Boundary to turbulent combustion [J]. Progress in natural science. 2008, 18(10): 1181―1185. (in Chinese)
[16]
U. Subgrid-scale model for finite-difference simulations of turbulent flows in plane channels and annuli [J]. Journal of Computer Physics, 1975, 18: 376―404.
[17]
陈志华, 孙晓晖, 等. 微型三角楔超声速绕流特性的研究[J]. 工程力学, 2013, 30(4): 455―460. Xue Dawen, Chen Zhihua, Sun Xiaohui, et al. Investigations on the flow characteristics of supersonic flow past a micro-ramp [J]. Engineering Mechanics, 2013, 30(4): 455―460. (in Chinese)
[18]
D I, Saffmann P G. Reynolds stresses and one-dimensional spectra for a vortex model of homogeneous anisotropic turbulence [J]. Physics of Fluids, 1994, 6: 1787―1796.
[19]
R P, Aslam, T, Merriman B, Osher, S. A non- oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method) [J]. Journal of Computer Physics, 1999, 152: 457―492.