全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

压电与导体双材料界面端的奇异性研究

, PP. 209-216

Keywords: 界面端,特征值法,奇异性,无网格法,压电材料

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种求解平面应变条件下横观各向同性压电与导体双材料界面端的应力及电位移奇异性的特征值法。基于横观各向同性压电材料的基本方程和一阶近似假设,利用分离变量形式的位移函数和电势函数,导出了关于应力和电位移奇异性指数的奇异性特征方程。求解由无网格法离散的特征方程,即可得到应力和电位移的各阶奇异性指数,同时还可得到相应的应力和电位移角函数。数值计算结果与文献中给出的结果非常吻合,表明该方法具有很高的精度和效率。

References

[1]  M, Lua J. Development of the boundary element method for 2D piezoelectricity[J]. Composites: Part B, 1999, 30(7): 699―707.
[2]  J Q, Liu Y H, Wang X G. Numerical methods for the determination of multiple stress singularities and related stress intensity coefficients[J]. Engineering Fracture Mechanics, 1999, 63(6): 755―790.
[3]  Q H, Yu S W. An arbitrary orientated plane crack terminating at the interface between dissimilar piezoelectric materials[J]. International Journal of Solids and Structures, 1997, 34(5): 581―590.
[4]  J Q, Mutoh Y. Singularity at the interface edge of bonded transversely isotropic piezoelectric dissimilar materials[J]. JSME International Journal (Series A), 2001, 44(4): 556―566.
[5]  X G, Xu J Q. Edge singularity of bonded piezoelectric materials with repeated eigenvalues[J]. Journal of Zhejiang University (Science A), 2001, 2(2): 157―160.
[6]  X L, Rajapakse R K N D. On singularities in composite piezoelectric wedges and junctions[J]. International Journal of Solids and Structures, 1999, 37(23): 3253―3275.
[7]  C H, Chen C D. Decoupled formulation of piezoelectric elasticity under generalized plane deformation and its application to wedge problems[J]. International Journal of Solids and Structures, 2002, 39(12): 3131―3158.
[8]  M C, Zhu J J, Sze K Y. Electroelastic singularities in piezoelectric-elastic wedges and junctions[J]. Engineering Fracture Mechanics, 2006, 73(7): 855―868.
[9]  平学成, 朱剑军. 压电材料中切口/接头端部平面电弹性场奇异性有限元分析[J]. 固体力学学报, 2005, 26(2): 157―162. Chen Mengcheng, Ping Xuecheng, Zhu Jianjun. Finite element analysis of singular electroelastic fields near piezoelectric wedges[J]. Acta Mechanica Solida Sinica, 2005, 26(2): 157―162. (in Chinese)
[10]  杨笑梅. 用裂纹单位分析双压电材料界面力电耦合场奇异性场[J]. 工程力学, 2007, 24(3): 170―178. Wang Haitao, Yang Xiaomei. Analysis of singular electromechanical fields at the interfaces of bimorph with a “cracked element”[J]. Engineering Mechanics, 2007, 24(3): 170―178. (in Chinese)
[11]  分析不同材料界面应力奇异性的一维杂交有限元法[J]. 工程力学, 2009, 26(2): 21―26. Wang Haitao. A one-dimensional hybrid finite element method for the analysis of stress singularities at bi-material interfaces [J]. Engineering Mechanics, 2009, 26(2): 21―26. (in Chinese)
[12]  X G. A boundary value method for the singular behavior of biomaterial systems under inplane loading[J]. International Journal of Solids and Structures, 2005, 42(20): 513―5535.
[13]  考虑尺寸效应的横观各向同性压电结合材料轴对称界面端的奇异行为[D]. 杭州: 浙江工业大学, 2010. Wang Mei. Singularity at axisymmetric interface wedge of bonded dissimilar transversely isotropic piezoelectric materials considering dimension effects[D]. Hangzhou: Zhejiang University of Technology, 2010. (in Chinese)
[14]  胡涛, 徐峰. 各向异性复合材料尖劈的应力奇异性次数研究[J]. 工程力学, 2012, 29(11): 21―25. Wang Xiaogui, Hu Tao, Xu Feng. Stress singularities in tips of three-dimensional anisotropic multi-material wedges[J]. Engineering Mechanics, 2012, 29(11): 21―25. (in Chinese)
[15]  雷振坤. 双材料界面端应力奇异性的数字光滑性分析[J]. 工程力学, 2011, 28(12): 7―12. Li Xingmin, Lei Zhenkun. Digital photoelasticity analysis of stress singularity of biomaterial joints [J]. Engineering Mechanics, 2011, 28(12): 7―12 (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133