全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2014 

结构复杂行为分析的有限质点法研究综述

Keywords: 有限质点法,综述,基本理论,结构复杂行为,应用,发展趋势

Full-Text   Cite this paper   Add to My Lib

Abstract:

有限质点法是一种结构分析的新方法,它以向量力学理论和数值计算为基础,以点值描述和途径单元为基本概念,以清晰的物理模型和质点运动控制方程描述结构行为。该方法的计算不需组集单元的刚度矩阵,也不需迭代求解控制方程式。与传统方法相比,在结构的动力、几何非线性、材料非线性、屈曲或褶皱失效、机构运动、接触和碰撞等复杂行为分析中有较大的优势。该文首先介绍有限质点法的基本理论,在此基础上着重阐述这种新的数值分析方法在空间结构复杂行为研究领域的优势及应用,并对该方法的发展趋势作出展望。

References

[1]  K M, Isobe D. Structural collapse analysis of framed structures under impact loads using ASI-Gauss finite element method [J]. International Journal of Impact Engineering, 2007, 34(9): 1500―1516.
[2]  Z Y, Paulino G H. Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials [J]. International Journal for Numerical Methods in Engineering, 2007, 72(8): 893―923.
[3]  T, Hsieh B J. Nonlinear transient finite element analysis with convected coordinates [J]. International Journal for Numerical Methods in Engineering, 1973, 7(3): 255―271.
[4]  R D, Key S W. Transient shell response by numerical time integration [J]. International Journal for Numerical Methods in Engineering, 1973, 7(3): 273―286.
[5]  M A, Moita G F. A co-rotational formulation for 2-D continua including incompatible modes [J]. International Journal for Numerical Methods in Engineering, 1996, 39(15): 2619―2633.
[6]  T Y, Lee J J, Ting E C. Motion analysis of structures (MAS) for flexible multibody systems: planar motion of solidsb [J]. Multibody System Dynamics, 2008, 20(3): 197―221.
[7]  G, Goodman R E. Discontinuous deformation analysis [C]// Presented an 25th US Symp. on Rock Mech., Evanston, III, 1984, 1.
[8]  P A, Strack O D L. A discrete element model for granular assemblies [J]. Geotechnique, 1979, 29(1): 47―65.
[9]  T, Krongauz Y, Organ D. Meshless methods: An overview and recent developments [J]. Computer Methods In Applied Mechanics And Engineering, 1996, 139(1): 3―47.
[10]  E C, Y W C, Y W T, et al. Motion analysis and vector form intrinsic finite element [R]. Taipei: National Central University, 2006.
[11]  罗尧治. 基于有限质点法的结构倒塌破坏研究Ⅰ: 基本方法[J]. 建筑结构学报, 2011, 32(11): 17―26. Yu Ying, Luo Yaozhi. Structural collapse analysis based on finite particle method I: Basic approach [J]. Journal of Building Structures, 2011, 32(11): 17―26. (in Chinese)
[12]  许贤, 罗尧治. 基于有限质点法的结构动力非线性行为分析[J]. 工程力学, 2012(6): 63―69. Yu Ying, Xu Xian, Luo Yaozhi. Dynamic nonlinear analysis of structures based on the finite particle method [J]. Engineering Mechanics, 2012(6): 63―69. (in Chinese)
[13]  罗尧治. 基于有限质点法的结构屈曲行为分析[J]. 工程力学, 2009, 23(10): 23―29. Yu Ying, Luo Yaozhi. Buckling analysis of structures by the finite particle method [J]. Engineering Mechanics, 2009, 23(10): 23―29. (in Chinese)
[14]  罗尧治. 基于有限质点法的结构碰撞行为分析[J]. 工程力学, 2013(3): 66―72. Yu Ying, Luo Yaozhi. Impact analysis of structures based on finite particle method [J]. Engineering Mechanics, 2013(3): 66―72. (in Chinese)
[15]  罗尧治. 基于有限质点法的结构倒塌破坏研究Ⅱ: 关键问题与数值算例[J]. 建筑结构学报, 2011, 32(11): 27―35. Yu Ying, Luo Yaozhi. Structural collapse analysis based on finite particle methodⅡ: Key problems and numerical examples [J]. Journal of Building Structures, 2011, 32(11): 27―35. (in Chinese)
[16]  Y, Luo Y Z. Finite particle method for kinematically indeterminate bar assemblies [J]. Journal of Zhejiang University Science A, 2009, 10(5): 667―676.
[17]  Y, Luo Y Z. Motion analysis of deployable structures based on the rod hinge element by the finite particle method [J]. Proc IMechE Part G: Aerospace Engineering, 2009, 223(7): 955―964.
[18]  Y Z, Yang C. A vector-form hybrid particle-element method for modeling and nonlinear shell analysis of thin membranes exhibiting wrinkling [J]. Journal of Zhejiang University-SCIENCE A, 2014, 15(5): 331―350.
[19]  C, Shen Y B, Luo Y Z. An efficient numerical shape analysis for light weight membrane structures [J]. Journal of Zhejiang University-SCIENCE A, 2014, 15(4): 255―271.
[20]  C, Wang Y K, Ting E C. Fundamentals of a vector form intrinsic finite element: Part Ⅲ. Convected material frame and example [J]. Journal of Mechanics, 2004, 20(2): 133―143.
[21]  基于有限质点法的空间钢结构连续倒塌破坏研究[D]. 浙江: 浙江大学, 2010. Yu Ying. Progressive collapse of space steel structures based on the finite particle method [D]. Zhejiang: Zhejiang University, 2010. (in Chinese)
[22]  董石麟. 含可动机构的杆系结构非线性力法分析[J]. 固体力学学报, 2002, 23(3): 288―294. Luo Yaozhi, Dong Shilin. Nonlinear force method analysis for space truss with mobile mechanisms [J]. Acta Mechanica Solida Sinica, 2002, 23(3): 288―294. (in Chinese)
[23]  E H. Tension field theory [Z]. USA: Standford University, 1968, 305―320.
[24]  Y W, Pellegrino S. Wrinkled membranes. Part Ⅰ: experiments; part Ⅱ: analytical models; part Ⅲ: numerical simulations [J]. Journal of Mechanics of Materials and Structures. 2006, 1(1): 1―93.
[25]  Y, Lu J. Geometrically non-linear force method for assemblies with infinitesimal mechanisms [J]. Computers & Structures, 2006, 84(31): 2194―2199.
[26]  Y, Luo Y Z. Motion analysis of deployable structures based on the rod hinge element by the finite particle method [J]. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 2009, 223(G7): 955―964.
[27]  M, Nilsson L. The position code algorithm for contact searching [J]. International Journal for Numerical Methods in Engineering, 1994, 37(3): 359―386.
[28]  Z H, Nilsson L. Lagrange multiplier approach for evaluation of friction in explicit finite-element analysis [J]. Communications in Numerical Methods in Engineering, 1994, 10(3): 249―255.
[29]  N, Moës N, Moran B, et al. Extended finite element method for three‐dimensional crack modelling [J]. International Journal for Numerical Methods in Engineering, 2000, 48(11): 1549―1570.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133