全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

时间自适应在海洋平台桩靴上拔模拟中的应用

DOI: 10.6052/j.issn.1000-4750.2013.07.0635, PP. 64-71

Keywords: 时间自适应,截断误差,桩靴上拔,吸附力,海洋平台

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文通过模型试验和时间自适应有限元分析的方法模拟了海洋平台桩靴的上拔过程。在有限元数值分析中引入了启发式和基于误差评估的两种时间自适应方法,有效解决了因时间步长的选取而引起的不收敛和计算效率低等问题。启发式算法通过控制收敛速度调整时间步长,有效预防了不收敛或收敛过慢,但时步调整较为粗糙。基于误差评估的时间自适应有效控制了计算误差,能够平滑地调整时间步长,相比于启发式算法更具有精确性和稳定性。通过试验和数值方法得出海洋平台在上拔桩靴时需克服海床土体吸附力,采用时间自适应方法可以高效模拟桩靴位移时程的非线性问题。

References

[1]  Vesic A S. Breakout resistance of object embedded in ocean bottom [J]. Journal of Soil Mechanics and Foundations Division, 1971, 97: 1183―1205.
[2]  Sawicki A, Mierczynski J. Mechanics of the breakout phenomenon [J]. Computers and Geotechnics, 2003, 30(3): 231―243.
[3]  Purwana O A, Leung C F, Chow Y K, Foo K S. Influence of base suction on extraction of jack-up spudcans [J]. Geotechnique, 2005, 55(10): 741―753.
[4]  Chen R, Gaudin C, Cassidy M J. Investigation of the vertical uplift capacity of deep water mudmats in clay [J]. Canadian Geotechnical Journal, 2012, 49(7): 853―865.
[5]  Zhou X X, Chow Y K, Leung C F. Numerical modeling of breakout process of objects lying on the seabed surface [J]. Computers and Geotechnics, 2008, 35(5): 686―702.
[6]  Uzuoka R, Borja R I. Dynamics of unsaturated poroelastic solids at finite strain [J]. Internal Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(13): 1535―1573.
[7]  梁力, 林韵梅. 有限元网格修正的自适应分析及其应用[J]. 工程力学, 1995, 12(2): 109―118.
[8]  Liang Li, Lin Yunmei. Adaptive mesh refinement of finite element method and its application [J]. Engineering Mechanics, 1995, 12(2): 109―118. (in Chinese)
[9]  刘春梅, 肖映雄, 舒适, 钟柳强. 弹性力学问题的自适应有限元及其局部多重网格法[J]. 工程力学, 2012, 29(9): 60―67.
[10]  Liu Chunmei, Xiao Yingxiong, Shu Shi, Zhong Liuqing. Adaptive finite element method and local multigrid method for elasticity problems [J]. Engineering Mechanics, 2012, 29(9): 60―67. (in Chinese)
[11]  Zienkiewicz O C, Xie Y M. A simple error estimator and adaptive time stepping procedure for dynamic analysis [J]. Earthquake Engineering & Structural Dynamics, 1991, 20(9): 871―887.
[12]  Zeng L F, Wiberg N E, Li X D. A posteriori local error estimation and adaptive time-stepping for newmark integration in dynamic analysis [J]. Earthquake Engineering & Structural Dynamics, 1992, 21(7): 555―571.
[13]  Wiberg N E, Li X D. A post-processing technique and an a posteriori error estimate for the newmark method in dynamic analysis [J]. Earthquake Engineering & Structural Dynamics, 1993, 22(6): 465―489.
[14]  Sloan S W, Abbo A J. Biot consolidation analysis with automatic time stepping and error control Part 1: Theory and implementation [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(6): 467―492.
[15]  Sloan S W, Abbo A J. Biot consolidation analysis with automatic time stepping and error control Part 2: Applications [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(6): 493―529.
[16]  Tang G, Alshawabkeh A N, Mayes M A. Automatic time stepping with global error control for groundwater flow models [J]. Journal of Hydrologic Engineering, 2008, 13(9): 803―810.
[17]  李楠, 杨海天, 王乐方. 时域自适应精细算法求解自激振动问题[J]. 工程力学, 2007, 24(1): 23―26.
[18]  Li Nan, Yang Haitian, Wang Yuefang. Solving self-excited vibration problems via a self-adaptive precise algorithm in time domain [J]. Engineering Mechanics, 2007, 24(1): 23―26. (in Chinese)
[19]  Kavetski D, Binning P, Sloan S W. Adaptive backward Euler time stepping with truncation error control for numerical modeling of unsaturated fluid ?ow [J]. International Journal for Numerical Methods in Engineering, 2002, 53(6): 1301―1322.
[20]  D’haese C M F, Putti M, Paniconi C, et al. Assessment of adaptive and heuristic time stepping for variably saturated ?ow [J]. International Journal for Numerical Methods in Fluids, 2006, 53(7): 1173―1193.
[21]  Younes A, Acherer P. Empirical versus time stepping with embedded error control for density-driven flow in porous media [J]. Water Resources Research, 2010, 46(8): W08523.
[22]  Hirthe E M, Graf T. Non-iterative adaptive time-stepping scheme with temporal truncation error control for simulating variable-density flow [J]. Advances in Water Resources, 2012, 49: 46―55.
[23]  邵琪, 唐小微. 基于两种回归场的SPR误差评估在地震液化数值分析中的比较与应用[J]. 工程力学, 2013, 30(12): 145―153.
[24]  Shao Qi, Tang Xiaowei. Comparison and Application of the SPR error estimation based on two recovered fields in numerical analysis of seismic liquefaction [J]. Engineering Mechanics, 2013, 30(12): 145―153. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133