全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

强化辐射对工业炉内传热过程影响的耦合模拟

DOI: 10.6052/j.issn.1000-4750.2013.07.0623, PP. 218-225

Keywords: 计算流体力学,数值模拟,燃烧,工业加热炉,传热效率

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文以乙烯裂解炉为例研究强化辐射对工业加热炉内传热过程的影响,应用计算流体力学方法对裂解炉辐射室内的传热过程进行了耦合数值模拟,得到了裂解炉炉膛内烟气的流场、燃料燃烧和烟气温度场。计算模型中,采用了标准k-ε湍流模型,漩涡耗散/有限速率燃烧反应模型和离散传递辐射模型等计算模型。结果表明,在保持燃料量不变的情况下,通过安装热辐射元件强化炉壁的辐射传热,可以显著提高炉膛烟气的平均温度和传热效率;在保持炉管内介质吸热量不变的条件下,强化炉壁的辐射传热后可以减少10%的燃料量。

References

[1]  王松汉. 乙烯装置技术与运行[M]. 北京: 中国石化出版社, 2009: 228―229.
[2]  Wang Songhan. Ethylene plant technology and operations [M]. Beijing: China Petrochemical Press, 2009: 228―229. (in Chinese)
[3]  李靖, 徐伟. 基于Herschel-Bulkley流变模型的自密实混凝土流动的CFD模拟[J]. 工程力学, 2013, 30(1): 373―377.
[4]  Li Jingqi, Xu Wei. A CFD simulation of self-compacting concrete on Herschel-Bulkley rheological model [J]. Engineering Mechanics, 2013, 30(1): 373―377. (in Chinese)
[5]  刘振东, 李源, 喻磊, 毛树果, 孙艳军. 基于CFD技术的螺旋桨风机气流速度场数值模拟研究[J]. 工程力学, 2013, 30(6): 346―352.
[6]  Liu Zhendong, Li Yuan, Yu Lei, Mao Shuguo, Sun Yanjun. Numerical simulation of air-velocity field of propeller fan based on CFD [J]. Engineering Mechanics, 2013, 30(6): 346―352. (in Chinese)
[7]  黄祖祺, 杨光炯, 于遵红, 张宗贤, 等. 石油化工管式炉的模拟与计算机计算[M]. 北京: 化学工业出版社, 1993: 1―6.
[8]  Huang Zuqi, Yang Guangjiong, Yu Zunhong, Zhang Zongxian, et al. Simulation and computer calculation of the petrochemical tube furnace [M]. Beijing: Chemical Industry Press, 1993: 1―6. (in Chinese)
[9]  Detemmerman T, Froment G F. Three dimensional coupled simulation of furnaces and reactor tubes for the thermal cracking of hydrocarbons [J]. Oil & Gas Science and Technology. 1998, 53(2):181―194.
[10]  Heynderickx G J, Oprins A J M, Marin G B, et al. Three-dimensional flow patterns in cracking furnaces with long-flame burners [J]. AIChE J, 2001, 47(2): 388―400.
[11]  蓝兴英, 高金森, 徐春明. 乙烯裂解炉内传递和反应过程综合数值模拟研究[J]. 石油学报(石油加工), 2004, 20(1): 46―51.
[12]  Lan Xingying, Gao Jinshen, Xu Chunming. Numerical simulation of translation and reaction process in ethylene pyrolyzer [J]. Acta Ppetrolei Sinica (Petroleum Processing Section), 2004, 20(1): 46―51. (in Chinese)
[13]  Hu Guihua, Wang Honggang, Qian Feng. Numerical simulation on flow, combustion and heat transfer of ethylene cracking furnaces [J]. Chemical Engineering Science, 2011, 66(8): 1600―1611.
[14]  Hu Guihua, Wang Honggang, Qian Feng. Coupled simulation of an industrial naphtha cracking furnace equipped with long-flame and radiation burners [J]. Computers and Chemical Engineering, 2012, 38(1): 24―34.
[15]  张朝环. 乙烯裂解炉内燃烧与裂解反应过程数值模拟[D]. 天津: 天津大学, 2008: 128―136.
[16]  Zhang Chaohuan. Numerical simulation on the combustion and cracking reaction of ethylene cracking furnace [D]. Tianjin: Tianjin University, 2008: 128―136. (in Chinese)
[17]  陶文铨. 数值传热学 [M]. 第2版. 西安: 西安交通大学出版社, 2001: 1―15.
[18]  Tao Wenquan. Numerical heat transfer [M]. 2nd ed. Xi’an: Xi’an Jiaotong University Press, 2001: 1―15. (in Chiese)
[19]  Habibi A M B, Heynderickx G J. Impact of radiation models in CFD simulations of steam cracking furnaces [J]. Comput Chem Eng, 2007, 31(11): 1389―1406.
[20]  刘时涛, 王宏刚, 钱锋, 胡桂华. SL-Ⅱ型工业乙烯裂解炉内燃烧传热与裂解反应的耦合模拟[J]. 化工学报, 2011, 62(5): 1308―1317.
[21]  Liu Shitao, Wang Honggang, Qian Feng, Hu Guihua. Coupled simulation of combustion with heat transfer and cracking reaction in SL-Ⅱindustrial ethylene pyrolyzer [J]. CIESC Journal, 2011, 62(5): 1308―1317. (in Chinese)
[22]  Modest M F. Radiative heat transfer [M]. 2nd ed. New York: Academic Press, 2003: 22―30.
[23]  万璐. 乙烯裂解炉的热力学分析与节能措施[J]. 齐鲁石油化工, 2006, 34(1): 23―26.
[24]  Wan Lu. Thermodynamic analysis and energy conservation measures about ethylene pyrolyzer [J]. Qilu Petrochemical Technology, 2006, 34(1): 23―26. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133