全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

基于相场函数的压电复合材料俘能器拓扑优化设计

DOI: 10.6052/j.issn.1000-4750.2013.07.0665, PP. 198-204

Keywords: 拓扑优化,俘能器,相场函数,有限元分析,压电复合材料

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种基于相场函数的压电俘能器拓扑优化设计方法,通过设计俘能器的材料分布提高其工作效率。其中,利用相场函数描述俘能器上压电材料与基体材料(环氧基树脂)的分布,并建立以相场函数节点值为设计变量,以特定频率激励下俘能器的能量转换因子最大化为目标的拓扑优化模型。该文给出了目标函数和约束函数的灵敏度分析,并采用移动渐近线方法对优化问题进行求解。数值算例验证了所提出的数学模型与设计方法的可行性和有效性。

References

[1]  Sodano H A, Inman D J, Park G. A Review of Power Harvesting from Vibration Using Piezoelectric Materials [J]. The Shock and Vibration Digest, 2004, 36(3): 197―205.
[2]  胡元太, 蒋树农, 薛欢. 压电俘能器结构及其力/ 电耦合作用分析[J]. 固体力学学报, 2010, 31(5): 451―467. Hu Yuantai, Jiang Shunong, Xue Huan. Analysis on the structures of piezoelectric harvesters and the corresponding electromechanical couplings. Chinese journal of solid mechanics [J]. 2010, 31(5): 451―467. (in Chinese)
[3]  Lee S, Youn B D, Jung B C. Robust segment-type energy harvester and its application to a wireless sensor [J]. Smart Materials and Structures, 2009, 18(9): 095021.
[4]  Friswella M I, Adhikari S. Sensor shape design for piezoelectric cantilever beams to harvest vibration energy [J]. Journal of Applied Physics, 2010, 108(1): 014901.
[5]  Mo C, Radziemski L J, Clark W W. Analysis of piezoelectric circular diaphragm energy harvesters for use in a pressure fluctuating system [J]. Smart Materials and Structures, 2010, 19(2): 025016.
[6]  Wang Xiaoming, Kang Zhan, Wang Yiqiang. Topology design of slender piezoelectric actuators with repetitive component patterns [J]. Journal of Intelligent Material Systems and Structures, 2011, 22(18): 2161―2172.
[7]  罗阳军, 吴霄翔, 邓子辰. 钢筋混凝土结构的应力拓扑优化方法研究[J]. 工程力学, 2013, 30(6): 22―29. Luo Yangjun, Wu Xiaoxiang, Deng Zichen. Study on stress based topology optimization for reinforced concrete structures [J]. Engineering Mechanics, 2013, 30(6): 22―29. (in Chinese)
[8]  Andreasen C S, Sigmund O. Topology optimization of fluid-structure-interaction problems in poroelasticity [J]. Computer Methods in Applied Mechanics and Engineering, 2013, 258(1): 55―62.
[9]  叶红玲, 李耀明, 张颜明, 隋允康. 基于对数型 Heaviside 近似函数作为过滤函数的动力响应结构拓扑优化 ICM 方法[J]. 工程力学, 2014, 31(6): 13―20. Ye Hongling, Li Yaoming , Zhang Yanming, Sui Yunkang. Structural topology optimization of frequency response problem by approximately logarithmic Heaviside function based on ICM method [J]. Engineering Mechanics, 2014, 31(6): 13―20. (in Chinese)
[10]  王晓明, 亢战. 基于周期拼装的平面压电作动器结构拓扑优化[J]. 计算力学学报, 2011, 28(2): 193―199. Wang Xiaoming, Kang Zhan. Structural topology optimization of planar piezoelectric actuators with repetitive assembling components [J]. Chinese Journal of Computational Mechanics, 2011, 28(2): 193―199. (in Chinese)
[11]  Ha Y, Cho S. Design sensitivity analysis and topology optimization of eigenvalue problems for piezoelectric resonators [J]. Smart Materials and Structures, 2006, 15(6): 1513―1524.
[12]  Zheng B, Chang C J, Gea H. Topology optimization of energy harvesting devices using piezoelectric materials [J]. Structural and Multidisciplinary Optimization, 2009, 38(1): 17―23.
[13]  Nakasone P H, Silva E C N. Design of piezoelectric energy harvesting devices and laminate structures by applying topology optimization [C]// Proceedings of SPIE Modeling, Signal Processing, and Control for Smart Structures. San Diego, CA, USA, 2009, 728603.
[14]  Rupp C J, Evgrafov A, Maute K, et al. Design of Piezoelectric Energy Harvesting Systems: A Topology Optimization Approach Based on Multilayer Plates and Shells [J]. Journal of Intelligent Material Systems and Structures, 2009, 20(16): 1923―1939.
[15]  Chen S, Gonella S, Chen W, et al. A level set approach for optimal design of smart energy harvesters [J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37/38/39/40): 2532―2543.
[16]  Vatanabe S L, Paulino G H, Silva E C N. Influence of pattern gradation on the design of piezocomposite energy harvesting devices using topology optimization [J]. Composites: Part B, 2012, 43(6): 2646―2654.
[17]  Belytschko T, Xiao S P, Parimi C. Topology optimization with implicit functions and regularization [J]. International Journal for Numerical Methods in Engineering, 2003, 57(8): 1177―1196.
[18]  Takezawa A, Nishiwaki S, Kitamura M. Shape and topology optimization based on the phase field method and sensitivity analysis [J]. Journal of Computational Physics, 2010, 229(7): 2697―2718.
[19]  Svanberg K. The method of moving asymptotes - A new method for structural optimization [J]. International Journal for Numerical Method in Engineering, 1987, 24(2): 359―373.
[20]  Vatanabe S L, Paulino G H, Silva E C N. Design of functionally graded piezocomposites using topology optimization and homogenization - Toward effective energy harvesting materials [J]. Computer Methods in Applied Mechanics and Engineering, 2013, 266(1): 205―218.
[21]  Sigmund O. On the design of compliant mechanisms using topology optimization [J]. Mechanics of Structures and Machines, 1997, 25(4): 493―524.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133