全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

功能梯度Levinson圆板弯曲解的均匀化和经典化表示

DOI: 10.6052/j.issn.1000-4750.2013.07.0697

Keywords: 功能梯度圆板,Levinson板理论,轴对称,弯曲解,转换系数

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于Levinson三阶剪切变形理论,研究了材料性质沿厚度任意连续变化的功能梯度材料圆板的轴对称弯曲问题。首先,建立了功能梯度材料圆板在Levinson板理论下轴对称弯曲问题位移形式的控制微分方程,其中考虑了拉-弯耦合和三阶剪切变形效应。然后,利用载荷等效关系以及均匀板的经典理论控制微分方程,导出功能梯度圆板在Levinson剪切变形理论下弯曲解与经典理论下均匀圆板的挠度之间的解析转换关系,给出了转换系数的计算公式。由此,可将功能梯度材料圆板在Levinson三阶剪切理论下的弯曲问题转化为相应均匀薄圆板在经典理论下的弯曲问题求解,以及转换系数的计算问题。

References

[1]  仲政, 吴林志, 陈伟球. 功能梯度材料与结构的若干力学问题研究进展[J]. 力学进展, 2010, 40(5): 528―541.
[2]  Zhong Zheng, Wu Linzhi, Chen Weiqiu. Progress in the study on mechanics problems of functionally graded materials and structures [J]. Advances in Mechanics, 2010, 40(5): 528―541. (in Chinese)
[3]  Shen H S. Functionally graded materials-nonlinear analysis of plates and shells [M]. London: CRC Press, Taylor & Francis Group, 2009: 1―3.
[4]  Zhang D G, Zhou Y H. A theoretical analysis of FGM plate based on physical neutral surface [J]. Computational Materials Science, 2008, 44(2): 716―720.
[5]  李世荣, 高颖, 张靖华. 功能梯度与均匀圆板静动态解之间的相似转换关系[J]. 固体力学学报, 2011, 32(Suppl): 120―125.
[6]  Li Shirong, Gao Ying, Zhang Jinghua. Analogous transformation between of static and dynamic solutions of functionally graded material and uniform circular plates [J]. Chinese Journal of Solid Mechanics, 2011, 32(Suppl): 120―125. (in Chinese)
[7]  李世荣, 高颖, 张靖华. 功能梯度板与均匀板固有频率之间的相似转换[J]. 兰州理工大学学报, 2012, 38(2): 158―163.
[8]  Li Shirong, Gao Ying, Zhang Jinghua. Analogous transformation between natural frequencies of functionally graded plates and homogenous plates [J]. Journal of Lanzhou University of Technology, 2012, 38(2): 158―163. (in Chinese)
[9]  Reddy J N, Wang C M, Kitipomchai S. Axisymmetric bending of functionally graded circular plates [J]. European Journal of Mechanics-A/ Solids, 1999, 18(2): 185―199.
[10]  王铁军, 马连生, 石朝峰. 功能梯度中厚圆/环板轴对称弯曲问题的解析解[J]. 力学学报, 2004, 36(3): 348―353.
[11]  Wang Tiejun, Ma Liansheng Shi Zhaofeng. Analytical solutions for axisymmetric bending of functionally graded circular/annular plates [J]. Acta Mechanica Sinica, 2004, 36(3): 348―353. (in Chinese)
[12]  Croce L D, Venini P. Finite elements for functionally graded Reissner-Mindlin plates [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(9/10/11): 705―724.
[13]  李世荣, 张靖华, 徐华. 功能梯度与均匀圆板弯曲解的线性转换关系[J]. 力学学报, 2011, 43(5): 871―877.
[14]  Li Shirong, Zhang Jinghua, Xu Hua. Linear transformation between the bending solutions of functionally graded and homogenous circular plates [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 871―877. (in Chinese)
[15]  Ma L S, Wang T J. Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical theory [J]. International Journal of Solids and Structures, 2004, 41(1): 85―101.
[16]  Sahraee S, Saidi A R. Axisymmetric bending of thick functionally graded plates using fourth-order shear deformation theory [J]. European Journal of Mechanics A/Solids, 2009, 28(5): 974―984.
[17]  Zhong Z, Shang E T. Exact analysis of simply supported functionally graded piezoelectric plates [J]. Journal of Intelligent Material System and Structures, 2005, 16(7/8): 643―651.
[18]  郑磊, 仲政. 弹性支承功能梯度圆板轴对称弯曲问题精确解[J]. 同济大学学报(自然科学版), 2009, 37(7): 893―897.
[19]  Zheng Lei, Zhong Zheng. Exact solution for axisymmetric bending of functionally graded circular plate under elastically supported boundary condition [J]. Journal of Tongji University (Natural Science), 2009, 37(7): 893―897. (in Chinese)
[20]  Wang Y, Xu R Q, Ding H J. Three-dimensional solution of axisymmetric bending of functionally graded circular plates [J]. Composite Structures, 2010, 92(7): 1683―1693.
[21]  Wang Y, Xu R Q, Ding H J. Axisymmetric bending of functionally graded circular magneto-electro-elastic plates [J]. European Journal of Mechanics, 2011, 30(6): 999―1011.
[22]  Abrate S. Free vibration, buckling and static deflections of functionally graded plates [J]. Composites Science and Technology, 2006, 66(14): 2383―2394.
[23]  Abrate S. Functionally graded plates behave like homogenous plates [J]. Composites Part B: Engineering, 2008, 39(1): 151―158.
[24]  徐华, 李世荣. 一阶剪切理论下功能梯度梁与均匀梁静态解之间的相似关系[J]. 工程力学, 2012, 29(4): 161―167.
[25]  Xu Hua, Li Shirong. Analogous relationship between the static solutions of functionally graded beams and homogenous beams based on the first-order shear deformation theory [J]. Engineer Mechanics, 2012, 29(4): 161―167. (in Chinese)
[26]  Sallai B O, Tounsi A, Mechab I, et al. A theoretical analysis of flexional bending of Al/Al 2 O 3 S-FGM thick beams [J]. Computational Materials Science, 2009, 44(4): 1344―1350.
[27]  Reddy J N, Wang C M, Lim G T, Ng K H. Bending solutions of Levinson beams and plates in terms of the classical theories [J]. International Journal of Solids and Structures, 2001, 38(26/27): 4701―4720.
[28]  (附录转第35页)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133