全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

水下耐压结构拓扑优化设计方法探究

DOI: 10.6052/j.issn.1000-4750.2013.07.0705, PP. 247-256

Keywords: 耐压结构,拓扑优化,压力载荷,图像分割,水平集

Full-Text   Cite this paper   Add to My Lib

Abstract:

探究了拓扑优化设计方法在水下耐压结构设计中的应用。与固定载荷作用下结构的优化设计相比,此类问题需要正确地确定压力作用面。在拓扑优化过程中,利用变密度法得到的中间结构拓扑实际上可以看成是灰度图。基于此,提出了基于图像分割技术的压力加载面搜索方法,并利用距离正规化水平集方法(DRLSE)检测图像边界。利用数值算例验证了方法的有效性,并研究了静水压力作用下结构的拓扑优化设计问题。在给定材料约束的前提下,研究了不同边界条件下耐压壳体的最小柔顺度及最优结构拓扑形式。优化结果说明了该方法在多球交接耐压壳结构形式优化设计及复杂边界条件下耐压结构新形式探索中的工程应用价值。

References

[1]  刘涛, 王璇, 王帅, 王磊. 深海载人潜水器发展现状及技术进展[J]. 中国造船, 2012, 53(3): 233―242.
[2]  Liu Tao, Wang Xuan, Wang Shuai, Wang Lei. The current situation of the development of deep-sea manned submersibles and technical progress [J]. Shipbuilding of China, 2012, 53(3): 233―242. (in Chinese)
[3]  Bowen A D, Yoerger D R, Taylor C, et al. The Nereus hybrid underwater robotic vehicle for global ocean science operations to 11,000 m depth [C]. Proceedings of the 2008 IEEE/MTS Oceans Conference, Quebec City, Canada, 2008.
[4]  Liang C C, Shiah S W, Jen C Y, Chen H W. Optimum design of multiple intersecting spheres deep-submerged pressure hull [J]. Ocean Engineering, 2004, 31(2): 177―199.
[5]  苟鹏, 崔维成. 多球交接耐压壳结构优化问题的探究[J]. 船舶力学, 2009, 13(2): 269―277.
[6]  Gou Peng, Cui Weicheng. Study of structural optimization problem for multiple intersecting spherical pressure hulls [J]. Journal of Ship Mechanics, 2009, 13(2): 269―277. (in Chinese)
[7]  Bendsøe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method [J]. Comput Methods Appl Mech Eng, 1998, 71( ): 197―224.
[8]  龙凯, 陈广华. 基于物质点描述的双向渐进式拓扑优化方法[J]. 工程力学, 2012, 29(8): 308―312.
[9]  Long Kai, Chen Guanghua. Bidirectional evolutionary topology optimization method using material point description [J]. Engineering Mechanics, 2012, 29(8): 308―312. (in Chinese)
[10]  刘远东, 尹益辉, 郭中泽. 考虑静动力学特性的材料/结构一体化多目标优化设计[J]. 工程力学, 2012, 29(9): 37―49.
[11]  Liu Yuandong, Yin Yihui, Guo Zhongze. Integrated optimization design of materials and structures in consideration of static and dynamic performances [J]. Engineering Mechanics, 2012, 29(9): 37―49. (in Chinese)
[12]  张维声, 孙国, 郭旭, 单鹏. 基于水平集描述的结构拓扑与构件布局联合优化新方法[J]. 工程力学, 2013, 30(7): 22―27.
[13]  Zhang Weisheng, Sun Guo, Guo Xu, Shan Peng. A level set-based approach for simultaneous optimization of the structural topology optimization and the layout of embedding structural components [J]. Engineering Mechanics, 2013, 30(7): 22―27. (in Chinese)
[14]  Hammer V B, Olhoff N. Topology optimization of continuum structures subjected to pressure loading [J]. Struct Multidisc Optim, 2000, 19(2): 85―92.
[15]  Hammer V B, Olhoff N. Topology optimization of 3D structures with design dependent loads [C]. Proceedings of the Fourth World Congress of Structural and Multidisciplinary Optimization Dalian, Dalian, China, 2001.
[16]  Du J, Olhoff N. Topological optimization of continuum structures with design-dependent surface loading—part I: new computational approach for 2D problems [J]. Struct Multidisc Optim, 2004, 27(3): 151―165.
[17]  Du J, Olhoff N. Topological optimization of continuum structures with design-dependent surface loading—part II: algo- rithm and examples for 3D problems [J]. Struct Multidisc Optim, 2004, 27(3): 166―177.
[18]  Zhang H, Zhang X, Liu ST. A new boundary search scheme for topology optimization of continuum structures with design-dependent loads [J]. Struct Multidiscipl Optim, 2008, 37(2): 121―129.
[19]  Lee E, Martins JRRA. Structural topology optimization with design-dependent pressure loads [J]. Computer Methods in Applied Mechanics and Engineering, 2012, 233/234/235/236: 40―48.
[20]  Chen B C, Kikuchi N. Topology optimization with design-dependent loads [J]. Finite Elements in Analysis and Design, 2001, 37(1): 57―70.
[21]  Yoon G H, Jensen J S, Sigmund O. Topology optimization of acoustic―structure interaction problems using a mixed finite element formulation [J]. International Journal for Numerical Methods in Engineering, 2007, 70(9): 1049―1075.
[22]  Zheng B, Chang C, Gea H C. Topology optimization with design-dependent pressure loading [J]. Structural and Multidisciplinary Optimization, 2008, 38(6): 535―543.
[23]  Bourdin B, Chambolle A. Design-dependent loads in topology optimization [J]. ESAIM: Control Optim Calc Var, 2009, 9: 19―48.
[24]  Sigmund O, Clausen P M. Topology optimization using a mixed formulation: An alternative way to solve pressure load problems [J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(13/14/15/16): 1874―1889.
[25]  Bruggi M, Cinquini C. An alternative truly-mixed formulation to solve pressure load problems in topology optimization [J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(17/18/19/20): 1500―1512.
[26]  Johnson C, Mercier B. Some equilibrium finite elements methods for two dimensional elasticity problems [J]. Numer Math, 1978, 30(1): 103―116.
[27]  Fuchs M B, Shemesh N N Y. Density-based topological design of structures subjected to water pressure using a parametric loading surface [J]. Struct Multidiscipl Optim, 2004, 28(1): 11―19.
[28]  张卫红, 杨军刚, 朱继宏. 压力载荷下的结构拓扑-形状协同优化[J]. 航空学报, 2009, 30(12): 2335―2341.
[29]  Zhang Weihong, Yang Jungang, Zhu Jihong. Simultaneous Topology and Shape Optimization of Pressure Loaded Structures [J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2335―2341. (in Chinese)
[30]  Yang X Y, Xie Y M, Steven G P. Evolutionary methods for topology optimization of continuous structures with design dependent loads [J]. Computers & Structures, 2005, 83(12/13): 956―963.
[31]  Allaire G, Jouve F, Toader A M. Structural optimization using sensitivity analysis and a level-set method [J]. Journal of Computational Physics, 2004, 194(1): 363―393.
[32]  郭旭, 赵康. 拓扑相关荷载作用下结构拓扑优化的水平集方法[J]. 工程力学, 2005, 22(5): 69―77.
[33]  Guo Xu, Zhao Kang. Topology optimization with design-dependent loads by level set approach [J]. Engineering Mechanics, 2005, 22(5): 69―77. (in Chinese)
[34]  Li C, Xu C, Gui C, Fox M D. Distance Regularized Level Set Evolution and its Application to Image Segmentation [J]. IEEE Transactions on Image Processing, 2010, 19(12): 3243―3254.
[35]  Zhou M, Rozvany GIN. The COC algorithm, Part II: Topological, geometrical and generalized shape optimization [J]. Computer Methods Applied Mechanics and Engineering, 1991, 89(1/2/3): 309―336.
[36]  Svanberg K. The method of moving asymptotes-a new method for structural optimization [J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359―373.
[37]  Sigmund O. On the design of compliant mechanisms using topology optimization [J]. Mechanics of Structures and Machines, 1997, 25(4): 493―524.
[38]  Osher S, Sethian J. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations [J]. Journal of Computational Physics, 1988, 79(1): 12―49.
[39]  Osher S, Sethian J, Fedkiw, Ronald P. Level Set Methods and Dynamic Implicit Surfaces [M]. New York: Springer-Verlag, 2002.
[40]  Aubert G, Kornprobst P. Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations [M]. New York: Springer-Verlag, 2002.
[41]  Michaleris P, Tortorelli D A, Vidal C A. Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications in elastoplasticity [J]. International Journal for Numerical Methods in Engineering, 1994, 37(14): 2471―2500.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133