全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

基于统一强度理论的厚壁套管柱三轴抗拉强度

DOI: 10.6052/j.issn.1000-4750.2013.07.0646, PP. 234-240

Keywords: 统一强度理论,厚壁套管柱,三轴抗拉强度,SD效应,中间主应力

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究油气井厚壁套管柱的力学性能,基于统一强度理论,合理考虑中间主应力和材料拉压比的影响,推导了厚壁套管柱三轴抗拉强度的计算公式,分析了内外压比、材料的拉压比、中间主应力和径厚比等因素对不同工况下套管柱三轴抗拉强度的影响特性。研究结果表明:强度准则的选用对套管柱的三轴抗拉强度具有显著影响;材料拉压强度不等特性(SD效应)对套管柱的三轴抗拉强度也具有显著影响,当内外压比小于或等于1时,套管柱的三轴抗拉强度随材料拉压比的增大近似线性提高,当内外压比大于1时,材料SD效应的影响与外荷载有关;考虑中间主应力效应可以充分发挥材料的自承载能力和强度潜能,提高套管柱的三轴抗拉强度,具有一定的经济效益;内外压比和径厚比对套管柱的三轴抗拉强度也具有一定的影响。该文计算公式适用于具有SD效应和中间主应力效应的材料,并将多种屈服准则下套管柱三轴抗拉强度的表达式统一起来,具有广泛的适用性,可为油气井厚壁套管柱的设计提供借鉴。

References

[1]  Li Z F. Mechanical analysis of tubing string in well testing operation [J]. Journal of Petroleum Science and Engineering, 2012, 90/91: 61―69.
[2]  Zhu S D, Wei J F, Cai R, Bai Z Q, Zhou G S. Corrosion failure analysis of high strength grade super 13Cr-110 tubing string [J]. Engineering Failure Analysis, 2011, 18(8): 2222―2231.
[3]  Huang X, Mihsein M, Kibble K, Hall R. Collapse strength analysis of casing design using finite element method [J]. International Journal of Pressure Vessels and Piping, 2000, 77(7): 359―367.
[4]  陈占锋, 朱卫平, 狄勤丰, 唐继平, 梁红军. 非均匀地应力下套管偏心对抗挤强度的影响[J]. 上海大学学报(自然科学版), 2012, 18(1): 83―86.
[5]  Chen Zhanfeng, Zhu Weiping, Di Qinfeng, Tang Jiping, Liang Hongjun. Effects of eccentricity of casing on collapse resistance in non-uniform in-situ stress [J]. Journal of Shanghai University (Natural Science), 2012, 18(1): 83―86. (in Chinese)
[6]  韩志勇. 关于“套管柱三轴抗拉强度公式”的讨论[J]. 中国石油大学学报(自然科学版), 2011, 35(4): 77―80.
[7]  Han Zhiyong. Discussing on formula of tri-axial tension strength of casing string [J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(4): 77―80. (in Chinese)
[8]  廖华林, 管志川, 马广军, 冯光通. 深井超深井内壁磨损套管剩余强度计算[J]. 工程力学, 2010, 27(2): 250―256.
[9]  Liao Hualin, Guan Zhichuan, Ma Guangjun, Feng Guangtong. Remaining strength calculation of internal wall worn casing in deep and ultra-deep wells [J]. Engineering Mechanics, 2010, 27(2): 250―256. (in Chinese)
[10]  American Petroleum Institute. API Bulletin 5C3 Bulletin on formulas and calculations of casing, tubing, drill pipe and line pipe properties [S]. Dallas: API, 1985.
[11]  SY/T 5322-2000, 套管柱强度设计方法[S]. 北京: 石油工业出版社, 2001.
[12]  SY/T 5322-2000, Design Method of Casing String Strength [S]. Beijing: Petroleum Industry Press, 2001. (in Chinese)
[13]  Chaix R. Factors influencing the strength differential of high strength steels [J]. Metallurgical Transactions, 1972, 3(2): 365―371.
[14]  Drucker D C. Plasticity theory, strength-differential (SD) phenomenon and volume expansion in metals and plastics [J]. Metallurgical Transactions, 1973, 4(3): 667―673.
[15]  Rauch G C, Leslie W C. The extant and nature of the strength-differential effect in steels [J]. Metallurgical Transactions, 1972, 3(2): 377―389.
[16]  Li X W, Zhao J H, Wang Q Y. Unified stress solution for sheet forming [J]. Advanced Materials Research, 2012, 463/464: 629―633.
[17]  Yu M H. Unified strength theory and its applications [M]. Berlin: Springer, 2004: 136.
[18]  俞茂宏. 双剪理论及其应用[M]. 北京: 科学出版社, 1998: 256.
[19]  Yu Maohong. Twin shear theory and its applications [M]. Beijing: Science Press, 1998: 256.
[20]  赵均海, 李艳, 梁文彪, 朱倩. 考虑初应力的哑铃型钢管混凝土拱肋极限承载力统一解[J]. 中国公路学报, 2012, 25(5): 58―66.
[21]  Zhao Junhai, Li Yan, Liang Wenbiao, Zhu Qian. Unified solution to ultimate bearing capacity of dumbbell shaped concrete-filled steel tube arch rib with initial stress [J]. China Journal of Highway and Transport, 2012, 25(5): 58―66. (in Chinese)
[22]  赵均海, 梁文彪, 张常光, 李艳. 非饱和土库仑主动土压力统一解[J]. 岩土力学, 2013, 34(3): 609―614.
[23]  Zhao Junhai, Liang Wenbiao, Zhang Changguang, Li Yan. Unified solution of Coulomb’s active earth pressure for unsaturated soils [J]. Rock and Soil Mechanics, 2013, 34(3): 609―614. (in Chinese)
[24]  Jin C W, Wang L Z, Zhang Y Q. Strength differential effect and influence of strength criterion on burst pressure of thin-walled pipelines [J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(11), 1361―1370.
[25]  马宗源, 廖红建, 党发宁. 中间主应力对金属悬臂梁承载力的影响[J]. 工程力学, 2013, 30(1): 307―313.
[26]  Ma Zongyuan, Liao Hongjian, Dang Faning. Influence of intermediate principal stress on bearing capacity of metallic cantilever beams [J]. Engineering Mechanics, 2013, 30(1): 307―313. (in Chinese)
[27]  Zhang C G, Zhao J H, Zhang Q H, Hu X D. A new closed-form solution for circular openings modeled by the Unified Strength Theory and radius-dependent Yong’s modulus [J]. Computers and Geotechnics, 2012, 42, 118―128.
[28]  覃成锦, 高德利. 套管强度计算的理论问题[J]. 石油学报, 2005, 26(5): 123―126.
[29]  Tan Chengjin, Gao Deli. Theoretic problems about calculation of casing strength [J]. Acta Petrolei Sinica, 2005, 26(5): 123―126. (in Chinese)
[30]  Zhu X K, Leis B N. Average shear stress yield criterion and its application to plastic collapse analysis of pipelines [J]. International Journal of Pressure Vessels and Piping, 2006, 83(9): 663―671.
[31]  Fan S C, Yu M H, Yang S Y. On the unification of yield criteria [J]. Journal of Applied Mechanics, 2002, 68(2): 341―343.
[32]  Yu M H. Twin shear stress yield criterion [J]. International Journal of Mechanical Sciences, 1983, 25(1): 71―74.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133