全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

考虑弹性边界曲梁模型的覆冰输电线舞动分析

DOI: 10.6052/j.issn.1000-4750.2013.07.0692, PP. 137-144

Keywords: 弹性边界,内共振,多尺度法,轴向模态函数,分岔稳定

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用解析法求解覆冰输电线考虑弹性边界的曲梁舞动模型有助于深入理解舞动发生机理。根据扭转向频率特性将三自由度舞动模型简化成更加适用于解析法求解的两自由度舞动模型,然后利用多尺度法分别推导出了1∶1和2∶1内共振情况下的简化幅值方程。接着考察了自由度缩减方法差异引起的轴向模态函数变化和弹性边界对舞动分岔和稳定、舞动幅值和临界风速的影响。结果显示,轴向模态函数的变化对1∶1内共振情况下分岔和稳定、舞动幅值和临界风速的影响较小,对2∶1内共振情况下相应值影响较大。当考虑截面偏心时,1∶1内共振条件下,弹性边界使发生不稳定舞动的风速范围减小。覆冰导线在弹性边界条件下的位移幅值相应减小,下临界风速增大,上临界风速相应减小,舞动风速范围减小。

References

[1]  郭应龙, 李国兴, 尤传永. 输电线路舞动[M]. 北京: 中国电力出版社, 2003: 5―14.
[2]  Guo Yinglong, Li Guoxing, You Chuanyong. Transmission line galloping [M]. Beijing: China Electric Power Press, 2003: 5―14. (in Chinese)
[3]  王昕, 楼文娟. 覆冰导线舞动数值解及影响因素分析[J]. 工程力学, 2010, 27(增刊): 290―294. Wang Xin, Lou Wenjuan. Galloping numerical approach and influencing factors analysis of the iced transmission line [J]. Engineering Mechanics, 2010, 27(Suppl): 290―294. (in Chinese)
[4]  晏致涛, 黄静文, 李正良. 基于结点6自由度的分裂导线有限元模型[J]. 工程力学, 2012, 29(8): 325―332. Yan Zhitao, Huang Jingwen, Li Zhengliang. Finite element model of bundle lines based on 6-DOF node [J]. Engineering Mechanics, 2012, 29(8): 325―332. (in Chinese)
[5]  Gawronski K E. Nonlinear galloping of bundle-conduct or transmission lines [D]. Potsdam, New York: Clarkson College of Technology, 1977.
[6]  White W N. An analysis of the influence of support stiffness on transmission line galloping amplitudes [D]. New Orleans: Tulane University, 1985.
[7]  Lee J C. Suppression of transmission line galloping by support compliance design [D]. Thesis. Tulane University, 1989.
[8]  Yu P, Desai Y M, Shah A H. Three-degrees-of-freedom model for galloping, Part I: Formulation [J]. Journal of Engineering Mechanics-ASCE, 1993, 119(12): 2404―2425.
[9]  Yu P, Desai Y M, Shah A H. Three-degree-of freedom model for galloping, Part II: Solutions and applications [J]. Journal of Engineering Mechanics-ASCE, 1993, 119(12): 2426―2448.
[10]  Luongo A, Zulli D, Piccardo G. A Linear curved-beam model for the analysis of galloping in suspended cables [J]. Journal of Mechanics of Materials and Structures, 2007, 2(4): 675―694.
[11]  Luongo A, Zulli D, Piccardo G. Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables [J]. Journal of Sound and Vibration, 2008, 315: 375―393.
[12]  Luongo A, Zulli D, Piccardo G. On the effect of twist angle on nonlinear galloping of cables [J]. Computers and Structures, 2009, 87(15): 1003―1014.
[13]  Yan Zhimiao, Yan Zhitao, Li Zhengliang et al. Nonlinear galloping of internally resonant iced transmission lines considering eccentricity [J]. Journal of Sound and Vibration. 2012, 331(15): 3599―3616.
[14]  霍涛, 晏致涛, 李正良, 等. 考虑弹性边界条件曲梁模型的覆冰输电线舞动 [J]. 振动与冲击, 2013, 32(21): 85―91.
[15]  Huo Tao, Yan Zhitao, Li Zhengliang, et al. Galloping curved-beam model of iced transmission line considering elastic boundary condition [J]. Journal of Vibration and Shock, 2013, 32(21): 85―91. (in Chinese)
[16]  Irvine H M. Cable Structure [M]. The MIT Press: Cambridge. 1981: 90―99.
[17]  Luongo A, Egidio A Di, Paolone A. On the proper form of the amplitude modulation equations of resonant systems [J]. Nonlinear Dynamics, 2002, 27(3): 237―254.
[18]  霍涛. 考虑弹性边界条件曲梁模型的覆冰导线舞动多 尺度法分析[D]. 重庆: 重庆大学, 2013.
[19]  Huo Tao. Multi-scale method galloping analysis of the iced transmission line based on curved-beam model and considering elastic boundary condition [D]. Chongqing: Chongqing University, 2013. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133