Guo Yinglong, Li Guoxing, You Chuanyong. Transmission line galloping [M]. Beijing: China Electric Power Press, 2003: 5―14. (in Chinese)
[3]
王昕, 楼文娟. 覆冰导线舞动数值解及影响因素分析[J]. 工程力学, 2010, 27(增刊): 290―294. Wang Xin, Lou Wenjuan. Galloping numerical approach and influencing factors analysis of the iced transmission line [J]. Engineering Mechanics, 2010, 27(Suppl): 290―294. (in Chinese)
[4]
晏致涛, 黄静文, 李正良. 基于结点6自由度的分裂导线有限元模型[J]. 工程力学, 2012, 29(8): 325―332. Yan Zhitao, Huang Jingwen, Li Zhengliang. Finite element model of bundle lines based on 6-DOF node [J]. Engineering Mechanics, 2012, 29(8): 325―332. (in Chinese)
[5]
Gawronski K E. Nonlinear galloping of bundle-conduct or transmission lines [D]. Potsdam, New York: Clarkson College of Technology, 1977.
[6]
White W N. An analysis of the influence of support stiffness on transmission line galloping amplitudes [D]. New Orleans: Tulane University, 1985.
[7]
Lee J C. Suppression of transmission line galloping by support compliance design [D]. Thesis. Tulane University, 1989.
[8]
Yu P, Desai Y M, Shah A H. Three-degrees-of-freedom model for galloping, Part I: Formulation [J]. Journal of Engineering Mechanics-ASCE, 1993, 119(12): 2404―2425.
[9]
Yu P, Desai Y M, Shah A H. Three-degree-of freedom model for galloping, Part II: Solutions and applications [J]. Journal of Engineering Mechanics-ASCE, 1993, 119(12): 2426―2448.
[10]
Luongo A, Zulli D, Piccardo G. A Linear curved-beam model for the analysis of galloping in suspended cables [J]. Journal of Mechanics of Materials and Structures, 2007, 2(4): 675―694.
[11]
Luongo A, Zulli D, Piccardo G. Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables [J]. Journal of Sound and Vibration, 2008, 315: 375―393.
[12]
Luongo A, Zulli D, Piccardo G. On the effect of twist angle on nonlinear galloping of cables [J]. Computers and Structures, 2009, 87(15): 1003―1014.
[13]
Yan Zhimiao, Yan Zhitao, Li Zhengliang et al. Nonlinear galloping of internally resonant iced transmission lines considering eccentricity [J]. Journal of Sound and Vibration. 2012, 331(15): 3599―3616.
Huo Tao, Yan Zhitao, Li Zhengliang, et al. Galloping curved-beam model of iced transmission line considering elastic boundary condition [J]. Journal of Vibration and Shock, 2013, 32(21): 85―91. (in Chinese)
[16]
Irvine H M. Cable Structure [M]. The MIT Press: Cambridge. 1981: 90―99.
[17]
Luongo A, Egidio A Di, Paolone A. On the proper form of the amplitude modulation equations of resonant systems [J]. Nonlinear Dynamics, 2002, 27(3): 237―254.
Huo Tao. Multi-scale method galloping analysis of the iced transmission line based on curved-beam model and considering elastic boundary condition [D]. Chongqing: Chongqing University, 2013. (in Chinese)