Lin Y K. Probabilistic theory of structural dynamics [M]. New York: McGraw-Hill, 1967: 293―332.
[2]
Roberts J B, Spanos P D. Random vibration and statistical linearization [M]. New York: Dover, 2003: 1―16.
[3]
朱位秋. 随机振动[M]. 北京: 科学出版社, 1992: 474―558. Zhu Weiqiu. Random vibration [M]. Beijing: Science Press, 1992: 474―558. (in Chinese)
[4]
李桂青, 曹宏. 结构动力可靠度及其应用[M]. 北京: 地震出版社, 1993: 26―82. Li Guiqiing, Cao Hong. Structure dynamic reliability and its application in engineering[M]. Beijing: Earthquake Press, 1993: 16―82. (in Chinese)
[5]
Crandall S H. First-crossing probabilities of the linear oscillator [J] . Journal of Sound and Vibration, 1970, 12(3): 285―299.
[6]
Chen J B, Li J. Dynamic response and reliability analysis of non-linear stochastic structures [J]. Probabilistic Engineering Mechanics, 2005, 20(1): 33―44.
[7]
Daubechies I. Ten lectures on wavelets [M]. Philadelphia: Society for Industrial and Applied Mathematics, 1992: 1―16.
[8]
Basu B. Wavelet-based stochastic seismic response of a duffing oscillator [J]. Journal of Sound and Vibration, 2001, 245(2): 251―260.
[9]
Basu B, Gupta V K. Seismic response of SDOF systems by wavelet modeling of nonstationary processes [J]. Journal of Engineering Mechanics-ASCE, 1998, 124(10): 1142―1150.
[10]
Tratskas P, Spanos P D. Linear multi-degree-of-freedom system stochastic response by using the harmonic wavelet transform [J]. Journal of Applied Mechanics, 2003, 70(5): 724―731.
[11]
Spanos P D, Kougioumtzoglou I A. Harmonic wavelets based statistical linearization for response evolutionary power spectrum determination [J]. Probabilistic Engineering Mechanics, 2012, 27(1): 57―68.
[12]
Nason G P, von Sachs R, Kroisandt G. Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum [J]. Journal of The Royal Statistical Society Series B-Statistical Methodology, 2000, 62(2): 271―295.
[13]
Newland D E. Harmonic and musical wavelets [J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1994, 444(1922): 605―620.
[14]
Newland D E. Harmonic wavelet analysis [J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1993, 443(1917): 203―225.
[15]
Priestley M. Power spectral analysis of non-stationary random processes [J]. Journal of Sound And Vibration, 1967, 6(1): 86―97.
[16]
Spanos P D, Kougioumtzoglou I A. Harmonic wavelet-based statistical linearization of the Bouc-Wen hysteretic model [C]// Faber, Kohler and Nishijima. Proceedings of the 11th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP. London: Taylor & Francis Group, 2011: 2649―2656.
[17]
Corotis R B, Vanmarcke E H, Cornell A C. First passage of nonstationary random processes [J]. Journal of the Engineering Mechanics Division, 1972, 98(2): 401―414.
[18]
Vanmarcke E H. On the distribution of the first-passage time for normal stationary random processes [J]. Journal of applied mechanics, 42(1975): 215―220.
[19]
Barbato M, Conte J P. Structural reliability applications of nonstationary spectral characteristics [J]. Journal of Engineering Mechanics, 2010, 137(5): 371―382.
[20]
Li J, Chen J B. Stochastic Dynamics of Structures [M]. Singapore: John Wiley & Sons, 2009: 285―308.
Cao Hui, Lai Ming, Bai Shaoliang. Estimation of local spectral density of earthquake ground motion based on wavelet transform [J]. Engineering Mechanics, 2004, 21(5): 109―115. (in Chinese)
Zhou Guangdong, Ding Youliang, Li Aiqun, Sun Peng. Estimation method of evolutionary power spectrum for non-stationary fluctuating wind using wavelet transforms [J]. Engineering Mechanics, 2013, 30(3): 89―97. (in Chinese)