全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bragg-Scattering Four-Wave Mixing in Nonlinear Fibers with Intracavity Frequency-Shifted Laser Pumps

DOI: 10.1155/2012/263828

Full-Text   Cite this paper   Add to My Lib

Abstract:

We experimentally study four-wave mixing in highly nonlinear fibers using two independent and partially coherent laser pumps and a third coherent signal. We focus our attention on the Bragg-scattering frequency conversion. The two pumps were obtained by amplifying two Intracavity frequency-shifted feedback lasers working in a continuous wave regime. 1. Introduction Over the last decades, the nonlinear phenomena of parametric four-wave mixing (FWM) have been intensively studied in view of their great potential to provide a large variety of all-optical functionalities for ultrafast signal processing [1–4]. In particular, optical parametric amplification, frequency conversion, phase conjugation, and nonlinear switching have been widely explored. The main interest was developed for FWM with coherent pumps, since this technique may provide high conversion efficiencies with appropriate dispersion curves [5]. Nevertheless, in recent years, FWM in optical fibers with incoherent or partially coherent pumps has attracted great attention, in view of its polarization-independent gain and increased resilience to stimulated Brillouin scattering (SBS) [6, 7]. Let us remember that SBS limits the direct use of intense and narrowband lasers in nonlinear fiber. For the specific case of highly nonlinear fibers (hereafter HNLF) the Brillouin threshold may be in the order of few tens of milliwatt for a fiber length of 500?m. The common way to increase the Brillouin threshold requires the adoption of phase modulation of pumps. For the case of two-pump parametric devices, optimal architectures of phase modulations have been proposed to suppress SBS. These solutions are based on phase modulators, generally driven by a pseudorandom bitsequence generator [4, 5, 8, 9] at GHz repetition frequency. With pure phase modulation the pumps can be spectrally broadened without affecting the time domain intensity. The adoption of incoherent pumps may represent a cost-effective solution to study FWM in different scenarios and may open a novel kind of applications, even if this may take place at the expense of low conversion efficiency and spectral broadening of the converted signal. The interplay between four-wave mixing processes with mixed coherent-incoherent pumps may also open entirely new features as reported very recently in [10]. Till now, most of investigations on nonlinear effects with incoherent pumping have been conducted for single pump FWM processes and so far, little attention has been paid to a specific type of FWM generally called Bragg-scattering FWM (BS-FWM) [6, 10]. The

References

[1]  C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 8, no. 3, pp. 538–547, 2002.
[2]  R. Slavík, F. Parmigiani, J. Kakande et al., “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nature Photonics, vol. 4, no. 10, pp. 690–695, 2010.
[3]  J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 8, no. 3, pp. 506–520, 2002.
[4]  D. Méchin, R. Provo, J. D. Harvey, and C. J. McKinstrie, “180-nm wavelength conversion based on Bragg scattering in an optical fiber,” Optics Express, vol. 14, no. 20, pp. 8995–8999, 2006.
[5]  R. Provo, S. Murdoch, J. D. Harvey, and D. Méchin, “Bragg scattering in a positive β4 fiber,” Optics Letters, vol. 35, no. 22, pp. 3730–3732, 2010.
[6]  Y. Yan and C. Yang, “Four-wave mixing between coherent signal and incoherent pump light in nonlinear fiber,” Journal of Lightwave Technology, vol. 27, no. 22, pp. 4954–4959, 2009.
[7]  D. Nodop, D. Schimpf, J. Limpert, and A. Tünnermann, “SBS suppression in high power fiber pulse amplifiers employing a superluminescence diode as seed source,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO EUROPE '11), Munich, Germany, May 2011, paper CJ7.6 THU.
[8]  A. H. Gnauck, R. M. Jopson, C. J. McKinstrie, J. C. Centanni, and S. Radic, “Demonstration of low-noise frequency conversion by Bragg Scattering in a Fiber,” Optics Express, vol. 14, no. 20, pp. 8989–8994, 2006.
[9]  S. Radic, R. M. Jopson, A. Gnauck, C. J. McKinstrie, J. C. Centanni, and A. R. Chaplyvy, “Stimulated-brillouin-scattering supression using a single modulator in two-pump parametric architectures,” in Proceedings of the Optical Fiber Communication Conference (OFC '05), Anaheim, Calif, USA, March 2005, paper OWN5.
[10]  J. Schr?der, A. Boucon, S. Coen, and T. Sylvestre, “Interplay of four-wave mixing processes with a mixed coherent-incoherent pump,” Optics Express, vol. 18, no. 25, pp. 25833–25838, 2010.
[11]  H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Physical Review Letters, vol. 105, no. 11, Article ID 093604, 2010.
[12]  Y. Yan and Y. Changxi, “Coherent light wave generated from incoherent pump light in nonlinear kerr medium,” Journal of the Optical Society of America B, vol. 26, no. 11, pp. 2059–2063, 2009.
[13]  H. G. Chatellus and J.-P. Pique, “Coherence properties of modeless lasers,” in Proceedings of the Science, Quantum of Quasars Workshop, Grenoble, France, December 2009.
[14]  L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Coherence in the output spectrum of frequency shifted feedback lasers,” Optics Communications, vol. 282, no. 2, pp. 300–309, 2009.
[15]  L. P. Yatsenko, B. W. Shore, and K. Bergmann, “An intuitive picture of the physics underlying optical ranging using frequency shifted feedback lasers seeded by a phase-modulated field,” Optics Communications, vol. 282, no. 11, pp. 2212–2216, 2009.
[16]  P. A. Champert, V. Couderc, and A. Barthélémy, “1.5-2.0-μm multiwatt continuum generation in dispersion-shifted fiber by use of high-power continuous-wave fiber source,” IEEE Photonics Technology Letters, vol. 16, no. 11, pp. 2445–2447, 2004.
[17]  K. Nakamura, T. Miyahara, and H. Ito, “Observation of a highly phase-correlated chirped frequency comb output from a frequency-shifted feedback laser,” Applied Physics Letters, vol. 72, no. 21, pp. 2631–2633, 1998.
[18]  M. Stellpflug, G. Bonnet, B. W. Shore, and K. Bergmann, “Dynamics of frequency shifted feedback lasers: Simulation studies,” Optics Express, vol. 11, no. 17, pp. 2060–2080, 2003.
[19]  B. Auguié, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technology Letters, vol. 18, no. 17, pp. 1825–1827, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133