全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Water-Based Assembly and Purification of Plasmon-Coupled Gold Nanoparticle Dimers and Trimers

DOI: 10.1155/2012/387274

Full-Text   Cite this paper   Add to My Lib

Abstract:

We describe a simple one-pot water-based scheme to produce gold nanoparticle groupings with short interparticle spacings. This approach combines a cross-linking molecule and a hydrophilic passivation layer to control the level of induced aggregation. Suspensions of dimers and trimers are readily obtained using a single electrophoretic purification step. The final interparticle spacings allow efficient coupling of the particle plasmon modes as verified in extinction spectroscopy. 1. Introduction The reproducible synthesis of well-defined metal nanoparticle groupings has been the subject of intense research during the last few years [1–6], driven largely by their use as substrates for surface-enhanced Raman scattering (SERS) [7–10]. The electromagnetic field impinging on pairs of silver or gold particles separated by a few nanometers is enhanced in the gap region by several orders of magnitude [11], allowing for single-molecule sensitivity of the SERS signal [12, 13]. For a 1?nm gap, the SERS enhancement factor is larger than 108 for gold particles larger than 30?nm in diameter [7], becoming sufficient to achieve single-molecule SERS sensitivity. Several approaches have been described using organic linkers [1–4, 6] or salt-induced aggregation [5, 9] to produce shortly spaced nanoparticle assemblies. In general, particle groupings with controlled geometries and valencies are obtained after several purification and reaction steps. Furthermore, in order to separate dimers and trimers from single particles and larger aggregates, the particles need to be sufficiently stable to sustain electrophoresis [2] or differential centrifugation [5]. Since the colloidal stability of metal nanoparticles decreases for larger diameters, it is difficult to combine efficient purification and large enough particles for SERS. Electrophoresis was used successfully to purify symmetric or asymmetric gold nanoparticle (AuNP) dimers and trimers linked by DNA strands [2]. Using this technique, we recently demonstrated the controlled assembly of gold nanoparticles smaller than 20?nm with a 1?nm gap using a DNA template [7]. Using DNA as a linker offers a large flexibility since a single oligonucleotide can be grafted on the surface of one particle [14]. However, controlled DNA functionalization is difficult to adapt to particles larger than 20?nm in diameter because of the intrinsic limitations of electrophoresis [15]. In particular, for particles larger than 30?nm in diameter, the gold surface needs to be passivated before electrophoresis using ethylene glycol oligomers [16].

References

[1]  A. P. Alivisatos, K. P. Johnsson, X. Peng et al., “Organization of 'nanocrystal molecules' using DNA,” Nature, vol. 382, no. 6592, pp. 609–611, 1996.
[2]  D. Zanchet, C. M. Micheel, W. J. Parak, D. Gerion, S. C. Williams, and A. P. Alivisatos, “Electrophoretic and structural studies of DNA-directed Au nanoparticle groupings,” Journal of Physical Chemistry B, vol. 106, no. 45, pp. 11758–11763, 2002.
[3]  R. Sardar, T. B. Heap, and J. S. Shumaker-Parry, “Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionalization approach,” Journal of the American Chemical Society, vol. 129, no. 17, pp. 5356–5357, 2007.
[4]  M. M. Maye, D. Nykypanchuk, M. Cuisinier, D. Van Der Lelie, and O. Gang, “Stepwise surface encoding for high-throughput assembly of nanoclusters,” Nature Materials, vol. 8, no. 5, pp. 388–391, 2009.
[5]  G. Chen, Y. Wang, L. H. Tan et al., “High-purity separation of gold nanoparticle dimers and trimers,” Journal of the American Chemical Society, vol. 131, no. 12, pp. 4218–4219, 2009.
[6]  Y. Wang, G. Chen, M. X. Yang, et al., “A systems approach towards the stoichiometry-controlled hetero-assembly of nanoparticles,” Nature Communications, vol. 1, p. 87, 2010.
[7]  S. Bidault, F. J. García De Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” Journal of the American Chemical Society, vol. 130, no. 9, pp. 2750–2751, 2008.
[8]  J. Kneipp, X. Li, M. Sherwood et al., “Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing,” Analytical Chemistry, vol. 80, no. 11, pp. 4247–4251, 2008.
[9]  W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced raman scattering,” Nano Letters, vol. 9, no. 1, pp. 485–490, 2009.
[10]  D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nature Materials, vol. 9, pp. 60–67, 2010.
[11]  H. Xu, J. Aizpurua, M. K?ll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Physical Review E, vol. 62, no. 3, pp. 4318–4324, 2000.
[12]  K. Kneipp, Y. Wang, H. Kneipp et al., “Single molecule detection using surface-enhanced Raman scattering (SERS),” Physical Review Letters, vol. 78, no. 9, pp. 1667–1670, 1997.
[13]  S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science, vol. 275, no. 5303, pp. 1102–1106, 1997.
[14]  D. Zanchet, C. M. Micheel, W. J. Parak, D. Gerion, and A. P. Alivisatos, “Electrophoretic isolation of discrete au nanocrystal/DNA conjugates,” Nano Letters, vol. 1, no. 1, pp. 32–35, 2001.
[15]  S. A. Claridge, H. W. Liang, S. R. Basu, J. M. J. Fréchet, and A. P. Alivisatos, “Isolation of discrete nanoparticle-DNA conjugates for plasmonic applications,” Nano Letters, vol. 8, no. 4, pp. 1202–1206, 2008.
[16]  B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 8, pp. 2667–2672, 2007.
[17]  M. P. Busson, B. Rolly, B. Stout, et al., “Optical and topological characterization of gold nanoparticle dimers linked by a single DNA double-strand,” Nano Letters, vol. 11, pp. 5060–5065, 2011.
[18]  G. Chen, Y. Wang, M. Yang et al., “Measuring ensemble-averaged surface-enhanced Raman scattering in the hotspots of colloidal nanoparticle dimers and trimers,” Journal of the American Chemical Society, vol. 132, no. 11, pp. 3644–3645, 2010.
[19]  X. M. Qian, X. H. Peng, D. O. Ansari, et al., “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nature Biotechnology, vol. 26, pp. 83–90, 2008.
[20]  S. C. Boca and S. Astilean, “Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags,” Nanotechnology, vol. 21, no. 23, Article ID 235601, 2010.
[21]  M. L. Sauthier, R. Lloyd Carroll, C. B. Gorman, and S. Franzen, “Nanoparticle layers assembled through DNA hybridization: characterization and optimization,” Langmuir, vol. 18, no. 5, pp. 1825–1830, 2002.
[22]  W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Optics Communications, vol. 220, no. 1–3, pp. 137–141, 2003.
[23]  K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Letters, vol. 3, no. 8, pp. 1087–1090, 2003.
[24]  A. Devilez, B. Stout, and N. Bonod, “Mode-balancing far-field control of light localization in nanoantennas,” Physical Review B, vol. 81, no. 24, Article ID 245128, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133