全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2012 

高阶数值流形方法中的线性相关问题研究

DOI: 10.6052/j.issn.1000-4750.2011.05.0277, PP. 228-232

Keywords: 流形方法,刚度矩阵,线性相关,LDLT算法,最小二乘法,二次规划法

Full-Text   Cite this paper   Add to My Lib

Abstract:

数值流形方法(NMM)中整体逼近函数是通过单位分解将局部逼近函数进行“粘结”而形成的,当将局部函数取为阶数不低于一阶的多项式时便形成了所谓的高阶流形方法。然而高阶流形方法会导致刚度矩阵亏秩,这种亏秩即使在施加完整的位移约束后仍然存在,从而会导致NMM方程组的多解,但是每个解所对应的位移是唯一的,只要能稳定地求得任何一个特解即可。该文根据刚度矩阵的性质提出了改进的LDLT算法,可快速稳定地求得一个特解。结合典型算例,与摄动解法、最小二乘法和二次规划法进行了对比分析。

References

[1]  石根华. 数值流形方法与非连续性变形分析[M] 裴觉民, 译. 北京: 清华大学出版社, 1997: 1―219.
[2]  Shi Genhua. Numerical manifold method and discontinuous deformation analysis [M]. Translated by Pei Juemin. Beijing: Tsinghua University Press, 1997: 1―219. (in Chinese)
[3]  王芝银, 李云鹏. 数值流形方法及其研究进展[J]. 力学进展, 2003, 33(2): 261―266.
[4]  Wang Zhiyin, Li Yunpeng. Numerical manifold method and its development [J]. Advances in Mechanics, 2003, 33(2): 261―266. (in Chinese)
[5]  Babuska I, Osborn B U, Osborn J E. Generalized finite element methods — main ideas, results and perspective [J]. International Journal of Computational Methods, 2004, 1(1): 67―103.
[6]  张贤达. 矩阵分析与应用[M]. 北京: 清华大学出版社, 2004: 205―254.
[7]  Zhang Xianda. Matrix analysis and applications [M]. Beijing: Tsinghua University Press, 2004: 205―254. (in Chinese)
[8]  杨明, 刘先忠. 矩阵论[M]. 第2版. 武汉: 华中科技大学出版社, 2005: 60―108.
[9]  Yang Ming, Liu Xianzhong. Matrix theory [M]. 2nd ed. Wuhan: Huazhong University of Science & Technology Press, 2005: 60―108. (in Chinese)
[10]  王萼芳, 石生明. 高等代数[M]. 第3版. 北京: 高等教育出版社, 2003: 237―271.
[11]  Wang Efang, Shi Shengming. Higher algebra [M]. 3rd ed. Beijing: Higher Education Press, 2003: 237―271. (in Chinese)
[12]  Duff I S, Reid J K. The multifrontal solution of indefinite sparse symmetric linear systems [J]. ACM Transactions on Mathematical Software, 1983, 9(3): 302―325.
[13]  孙文瑜, 徐成贤, 朱德通. 最优化方法[M]. 北京: 高等教育出版社, 2004: 172―184.
[14]  Sun Wenyu, Xu Chengxian, Zhu Detong. Optimization method [M]. Beijing: Higher Education Press, 2004: 172―184. (in Chinese)
[15]  张韵华, 奚梅成, 陈效群. 数值计算方法和算法[M]. 北京: 科学出版社, 2002: 91―119.
[16]  Zhang Yunhua, Xi Meicheng, Chen Xiaoqun. Numerical methods and algorithms [M]. Beijing: Science Press, 2002: 91―119. (in Chinese)
[17]  徐芝纶. 弹性力学简明教程[M]. 第3版. 北京: 高等教育出版社, 2002: 9―48.
[18]  Xu Zhilun. Elasticity simple tutorial [M]. 3rd ed. Beijing: Higher Education Press, 2002: 9―48. (in Chinese)
[19]  Strouboulis T, Babu?ka I, Copps K. The design and analysis of the generalized finite element method [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 181: 43―69.
[20]  Ma G W, An X M. The numerical manifold method: A review [J]. International Journal of Computational Methods, 2010, 7(1): 1―32.
[21]  彭自强, 葛修润. 数值流形方法在有限元三维二十结点单元上的实现[J]. 岩石力学与工程学报, 2004, 23(15): 2622―2627.
[22]  Peng Ziqiang, Ge Xiurun. Implementation of numerical manifold method by using 3D twenty-node iso-parametric element meshes of FEM [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(15): 2622―2627. (in Chinese)
[23]  An X M, Li L X, Ma G W. Prediction of rank deficiency in partition of unity-based methods with plane triangular or quadrilateral meshes [J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200: 665―674.
[24]  蔡永昌, 张湘伟. 使用高阶覆盖位移函数的数值流形方法及其应力精度的改善[J]. 机械工程学报, 2000, 36(9): 20―24.
[25]  Cai Yongchang, Zhang Xiangwei. Expansion to high-order cover function and improvement of the stress accuracy in numerical manifold method [J]. Chinese Journal of Mechanical Engineering, 2000, 36(9): 20―24. (in Chinese)
[26]  Penrose R. A generalized inverse for matrices [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1955, 51(3): 406―413.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133