全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2012 

基于细观结构统计特征的混凝土几何代表体尺寸研究

DOI: 10.6052/j.issn.1000-4750.2011.05.0278, PP. 1-6

Keywords: 水工结构,混凝土,代表体,细观结构,数值样本

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文在对混凝土细观结构统计特征深入研究的基础上,基于粗骨料含量、平均粒径、细度模数三个量的统计特征分析,给出了混凝土几何代表体的定义。利用体素的概念,提出了混凝土几何代表体尺寸的确定方法。以一级配混凝土为例,采用该文方法计算得到了基于细观结构的几何代表体尺寸。进一步分析了骨料级配、骨料体积含量等因素对混凝土几何代表体尺寸的影响规律,研究结果表明:随着骨料体积含量的增加,混凝土几何代表体尺寸呈下降趋势;在粗骨料体积含量达到40%以后,几何代表体尺寸变化幅度较小;一级配混凝土的几何代表体尺寸与最大骨料粒径的比值大于二级配混凝土的相应值。该文工作为混凝土细观机理研究、细观数值计算样本的选取等提供参考。

References

[1]  Grufman C, Ellyin F. Determining a representative volume element capturing the morphology of fibre reinforced polymer composites [J]. Composites Science and Technology, 2007, 67(3/4): 766―775.
[2]  Man H, van Mier J G M. Influence of particle density on 3D size effects in the fracture of (numerical) concrete [J]. Mechanics of Materials, 2008, 40(6): 470―486.
[3]  Lilliu G, Van J G M. 3D lattice type fracture model for concrete [J]. Engineering Fracture Mechanics, 2003, 70: 927―941.
[4]  Pez C M L, Carol I, Aguado A. Meso-structural study of concrete fracture using interface elements. I: Numerical model and tensile behavior [J]. Materials and Structures, 2008, 41(3): 583―599.
[5]  党发宁, 韩文涛, 田威. 混凝土单轴压缩破坏过程的三维细观数值模拟[J]. 西安理工大学学报, 2006, 22(2): 113―118.
[6]  Dang Faning, Han Wentao, Tian Wei. Three-dimensional numerical simulation on meso-level of uniaxial failure process in concrete [J]. Journal of Xi’an University of Technology, 2006, 22(2): 113―118. (in Chinese)
[7]  Lawler J S, Keane D T, Shah S P. Measuring three-dimensional damage in concrete under compression [J]. ACI Materials Journal, 2001, 98(6): 465―475.
[8]  Guo L, Carpinteri A, Sun W, et al. Measurement and analysis of defects in high-performance concrete with three-dimensional micro-computer tomography [J]. Journal of Southeast University (English Edition), 2009, 25(1): 83―88.
[9]  Xu X F, Chen X. Stochastic homogenization of random elastic multi-phase composites and size quantification of representative volume element [J]. Mechanics of Materials, 2009, 41(2): 174―186.
[10]  Gitman M I, Askes H, Sluys L J. Representative volume: Existence and size determination [J]. Engineering Fracture Mechanics, 2007, 74(16): 2518―2534.
[11]  刘光廷, 王宗敏. 用随机骨料模型数值模拟混凝土材料的断裂[J]. 清华大学学报(自然科学版), 1996, 36(1): 84―89.
[12]  Liu Guangting, Wang Zongmin. Numerical simulation study of fracture of concrete materials using random aggregate model [J]. Journal of Tsinghua University (Science and Technology), 1996, 36(1): 84―89. (in Chinese)
[13]  杜成斌, 孙立国. 任意形状混凝土骨料的数值模拟及其应用[J]. 水利学报, 2006, 37(6): 662―667.
[14]  Du Chengbin, Sun Liguo. Numerical simulation of concrete aggregates with arbitrary shapes and its application [J]. Journal of Hydraulic Engineering, 2006, 37(6): 662―667. (in Chinese)
[15]  马怀发, 陈厚群, 吴建平, 等. 大坝混凝土三维细观力学数值模型研究[J]. 计算力学学报, 2008, 25(2): 241―247.
[16]  Graham S, Yang N. Representative volumes of materials based on microstructural statistics [J]. Scripta Materialia, 2003, 48: 269―274.
[17]  Al-Raoush R, Papadopoulos A. Representative elementary volume analysis of porous media using X-ray computed tomography [J]. Powder Technology, 2010, 200(1/2): 69―77.
[18]  Grassl P, Wong H S, Buenfeld N R. Influence of aggregate size and volume fraction on shrinkage induced micro-cracking of concrete and mortar [J]. Cement and Concrete Research, 2010, 40(1): 85―93.
[19]  Ma Huaifa, Chen Houqun, Wu Jianping, et al. Study on numerical algorithm of 3D meso-mechanics model of dam concrete [J]. Chinese Journal of Computational Mechanics, 2008, 25(2): 241―247. (in Chinese)
[20]  Zhu W C, Tang C A, Wang S Y. Numerical study on the influence of mesomechanical properties on macroscopic fracture of concrete [J]. Structural Engineering and Mechanics, 2005, 19(5): 519―533.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133