全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2012 

均匀热流下导热裂纹II型温度应力强度因子的解析解

DOI: 10.6052/j.issn.1000-4750.2011.04.0256, PP. 34-39

Keywords: 热弹性力学,复变函数解法,Ⅱ型裂纹,导热裂纹,温度应力强度因子,解析解

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究含中心裂纹无限大板受远场均匀热流作用,热流密度方向与裂纹有一夹角的情况。当垂直于裂纹面方向有定量热流穿过裂纹时,采用复变函数理论,得出了温度、应力与位移场解析解。利用位移单值条件,确定出温度应力强度因子的解析表达式。针对铝合金LY12材料进行了数值计算,研究了裂纹导热情况与热流方向对温度场及温度应力强度因子的影响。研究表明:该文给定的温度边界条件下,只产生Ⅱ型温度应力强度因子,不产生Ⅰ型温度应力强度因子。热荷载可等效为一个远场均匀作用的剪应力。Ⅱ型温度应力场取决于热流密度沿垂直裂纹面方向的分量,平行于裂纹方向的热流分量对温度应力场没有影响。

References

[1]  Johnson Janine, Qu Jianmin. An interaction integral method for computing mixed mode stress intensity factors for curved bimaterial interface cracks in non-uniform temperature fields [J]. Engineering Fracture Mechanics, 2007, 74(14): 2282―2291.
[2]  Serkan Dag, Bora Yildirim, Duygu Sarikaya. Mixed-mode fracture analysis of orthotropic functionally graded materials under mechanical and thermal loads [J]. International Journal of Solids and Structures, 2007, 44(24): 7816―7840.
[3]  El-Borgi S, Erdogan F, Hidri L. A partially insulated embedded crack in an infinite functionally graded medium under thermo-mechanical loading [J]. International Journal of Engineering Science, 2004, 42(3/4): 371―393.
[4]  Zhu Bojing, Shi Yaolin, Qin Taiyan, Sukop Michael, Yu Shaohua, Li Yongbin. Mixed-mode stress intensity factors of 3D interface crack in fully coupled electromagnetothermoelastic multiphase composites [J]. International Journal of Solids and Structures, 2009, 46(13): 2669―2679.
[5]  Liu L, Kardomateas G A. A dislocation approach for the thermal stress intensity factors of a crack in an infinite anisotropic medium under uniform heat flow [J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(7): 989―996.
[6]  Tsang D K L, Oyadiji S O, Leung A Y T. Two- dimensional fractal-like finite element method for thermoelastic crack analysis [J]. International Journal of Solids and Structures, 2007, 44(24): 7862―7876.
[7]  Lee Kang Yong, Baik Woon Cheon. Boundary element analysis of thermal stress intensity factors for interface Griffith and cusp cracks [J]. Engineering Fracture Mechanics, 1994, 47(6): 909―918.
[8]  Lee Kang Yong, Park Sang-Joon. Thermal stress intensity factors for partially insulated interface crack under uniform heat flow [J]. Engineering Fracture Mechanics, 1995, 50(4): 475―482.
[9]  Rhymer D W, Johnson W S, Singh R, Pettit R. Stress intensity solutions of thermal fatigue induced cracks in a thin plate hot spot using LEFM and finite element analysis [J]. Engineering Fracture Mechanics, 2008, 75(10): 2826―2841.
[10]  唐雪松. 含中心裂纹正交各向异性板均匀热流作用下的温度场解析解[J]. 工程力学, 2007, 24(3): 28―33, 41.
[11]  Tang Xuesong. Analytical solutions of temperature fields for an orthotropic plate with a central crack under remote uniform heat flows [J]. Engineering Mechanics, 2007, 24(3): 28―33, 41. (in Chinese)
[12]  卢炎麟, 黄鲜萍, 姜献峰, 等. 三维热权函数法和多虚拟裂纹扩展技术[J]. 计算力学学报, 2003, 20(3): 302―308.
[13]  Lu Yanlin, Huang Xianping, Jiang Xianfeng, et al. 3-D thermal weight function method and multiple virtual crack extension technique [J]. Chinese Journal of Computational Mechanics, 2003, 20(3): 302―308. (in Chinese)
[14]  赵军, 王朝霞, 董一芬, 艾兴. 对称型梯度功能材料的瞬态热应力强度因子[J]. 山东大学学报(工学版), 2004, 34(3): 9―13.
[15]  Zhao Jun, Wang Zhaoxia, Dong Yifen, Ai Xing. Transient thermal stress intensity factors for a functionally gradient material with symmetrical structure [J]. Journal of Shandong University (Engineering Science), 2004, 34(3): 9―13. (in Chinese)
[16]  穆什赫里什维利 N I. 数学弹性力学的几个基本问题[M]. 赵惠元, 译. 北京: 科学出版社, 1958: 324―330.
[17]  Muskhelishivili N I. Some basic problems of the mathematical theory of elasticity [M]. Translated by Zhao Huiyuan. Beijing: Science Press, 1958: 324―330. (in Chinese)
[18]  张行. 断裂力学[M]. 北京: 宇航出版社, 1990: 34―40.
[19]  Zhang Xing. Fracture mechanics [M]. Beijing: Aerospace Press, 1990: 34―40. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133