全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2012 

组合线圈磁场下的液桥热表面张力流

DOI: 10.6052/j.issn.1000-4750.2010.12.0868, PP. 39-44

Keywords: 热表面张力流,磁场,对流控制,浮区法,晶体生长,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了优化外加磁场对对流控制作用,该文主要研究了轴向载流线圈磁场,横向四载流线圈磁场及其组合磁场对液桥热表面张力对流的控制.研究结果表明:轴向载流线圈磁场可有效抑制熔体的径向流动,并改善熔体对流的轴对称性;而横向载流线圈磁场可有效地抑制熔体轴向的对流,但是会破坏熔体对流的轴对称性.合理布置的轴向载流和横向四载流线圈的组合磁场同时保留了轴向载流线圈磁场的轴对称影响和横向四载流的轴向抑制作用,可以达到更好的控制熔体对流的效果,有利于从浮区法晶体生长中获得高质量晶体.

References

[1]  Peng L, Meng H Y, Li Z. Axial magnetic field influence on thermocapillary convection in detached solidification under microgravity [J]. Microgravity Science and Technology, 2011, 23(1): 141-147.
[2]  Sadik D, Hamdi S. Liquid phase electroepitaxy of semiconductors under static magnetic field [J]. CrystEngComm, 2011, 13(19): 5619-5633.
[3]  Dold P, Cr?ll A, Benz K. Floating-zone growth of silicon in magnetic fields. I.Weak static axial fields [J]. Journal of Crystal Growth, 1998, 183(4): 545-553.
[4]  Cr?ll A, Szofran F, Dold P, et al. Floating-zone growth of silicon in magnetic fields. II. Strong static axial fields [J]. Journal of Crystal Growth, 1998, 183(4): 554-563.
[5]  Pablo V de, Rivas D. Effect of an axial magnetic field on the flow pattern in a cylindrical floating zone [J]. Advances in Space Research, 2005, 36(1): 48-56.
[6]  陈朝波. 微重力环境下液桥对流及其磁场控制的数值 模拟研究[D]. 重庆: 重庆大学, 2008. Chen Chaobo. Thermocapillary flow and convection control by magnetic field in liquid bridge under microgravity [D]. Chongqing: Chongqing University, 2008. (in Chinese)
[7]  Levenstam M, Amberg G. Hydrodynamical instabilities of thermocapillary flow in a half-zone [J]. Journal of Fluid Mechanics, 1995, 297: 357-372.
[8]  Zeng Z, Mizuseki H, Higashino K, et al. Direct numerical simulation of oscillatory Marangoni convection in cylindrical liquid bridges [J]. Journal of Crystal Growth, 1999, 204(3): 395-404.
[9]  Zeng Z, Mizuseki H, Shimamura K, et al. Marangoni convection in model of floating zone under microgravity [J]. Journal of Crystal Growth, 2001, 229(1): 604-304.
[10]  Bednarz T. Numerical and experimental analyses of convection of paramagnetic fluid in a cubic enclosure [D]. Japan: Kyushu University, 2004.
[11]  Kaiser T, Benz K. Floating-zone growth of silicon in magnetic fields. III. Numerical simulation [J]. Journal of Crystal Growth, 1998, 183(4): 564-572.
[12]  Li X H, Zeng Z, Yao L P, et al. Influence of transverse magnetic field on thermocapillary flow in liquid bridge [J]. Crystal Research and Technology, 2011, 46(3): 249-254.
[13]  Lan C W. Effect of axisymmetric magnetic fields on radial dopant segregation of floating-zone silicon growth in a mirror furnace [J]. Journal of Crystal Growth, 1996, 169(2): 269-278.
[14]  Jr G Robertson, Oconnor D. Magnetic field effects on float-zone Si crystal growth. II-Strong transverse fields. III-Strong axial fields [J]. Journal of Crystal Growth, 1986, 76(1): 110-122.
[15]  Cr?ll A, Benz K. Static magnetic fields in semiconductor floating-zone growth [J]. Progress in Crystal Growth and Characterization of Materials, 1999, 38(1/2/3/4): 7-38.
[16]  Morthland T, Walker J. Thermocapillary convection during floating-zone silicon growth with a uniform or non-uniform magnetic field [J]. Journal of Crystal Growth, 1996, 158(4): 471-479.
[17]  Li K, Hu W R. Magnetic field design for floating zone crystal growth [J]. Journal of Crystal Growth, 2001, 230(1): 125-134.
[18]  Li K, Hu W R. Numerical simulation of magnetic field design for damping thermocapillary convection in a floating half-zone [J]. Journal of Crystal Growth, 2001, 222(3): 677-684.
[19]  Chen C B, Zeng Z, Mizuseki H, et al. Thermocapillary convection of liquid bridge under axisymmetric magnetic fields [J]. Materials Transactions, 2008, 49(11): 2566- 2571.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133