Peng L, Meng H Y, Li Z. Axial magnetic field influence on thermocapillary convection in detached solidification under microgravity [J]. Microgravity Science and Technology, 2011, 23(1): 141-147.
[2]
Sadik D, Hamdi S. Liquid phase electroepitaxy of semiconductors under static magnetic field [J]. CrystEngComm, 2011, 13(19): 5619-5633.
[3]
Dold P, Cr?ll A, Benz K. Floating-zone growth of silicon in magnetic fields. I.Weak static axial fields [J]. Journal of Crystal Growth, 1998, 183(4): 545-553.
[4]
Cr?ll A, Szofran F, Dold P, et al. Floating-zone growth of silicon in magnetic fields. II. Strong static axial fields [J]. Journal of Crystal Growth, 1998, 183(4): 554-563.
[5]
Pablo V de, Rivas D. Effect of an axial magnetic field on the flow pattern in a cylindrical floating zone [J]. Advances in Space Research, 2005, 36(1): 48-56.
[6]
陈朝波. 微重力环境下液桥对流及其磁场控制的数值 模拟研究[D]. 重庆: 重庆大学, 2008. Chen Chaobo. Thermocapillary flow and convection control by magnetic field in liquid bridge under microgravity [D]. Chongqing: Chongqing University, 2008. (in Chinese)
[7]
Levenstam M, Amberg G. Hydrodynamical instabilities of thermocapillary flow in a half-zone [J]. Journal of Fluid Mechanics, 1995, 297: 357-372.
[8]
Zeng Z, Mizuseki H, Higashino K, et al. Direct numerical simulation of oscillatory Marangoni convection in cylindrical liquid bridges [J]. Journal of Crystal Growth, 1999, 204(3): 395-404.
[9]
Zeng Z, Mizuseki H, Shimamura K, et al. Marangoni convection in model of floating zone under microgravity [J]. Journal of Crystal Growth, 2001, 229(1): 604-304.
[10]
Bednarz T. Numerical and experimental analyses of convection of paramagnetic fluid in a cubic enclosure [D]. Japan: Kyushu University, 2004.
[11]
Kaiser T, Benz K. Floating-zone growth of silicon in magnetic fields. III. Numerical simulation [J]. Journal of Crystal Growth, 1998, 183(4): 564-572.
[12]
Li X H, Zeng Z, Yao L P, et al. Influence of transverse magnetic field on thermocapillary flow in liquid bridge [J]. Crystal Research and Technology, 2011, 46(3): 249-254.
[13]
Lan C W. Effect of axisymmetric magnetic fields on radial dopant segregation of floating-zone silicon growth in a mirror furnace [J]. Journal of Crystal Growth, 1996, 169(2): 269-278.
[14]
Jr G Robertson, Oconnor D. Magnetic field effects on float-zone Si crystal growth. II-Strong transverse fields. III-Strong axial fields [J]. Journal of Crystal Growth, 1986, 76(1): 110-122.
[15]
Cr?ll A, Benz K. Static magnetic fields in semiconductor floating-zone growth [J]. Progress in Crystal Growth and Characterization of Materials, 1999, 38(1/2/3/4): 7-38.
[16]
Morthland T, Walker J. Thermocapillary convection during floating-zone silicon growth with a uniform or non-uniform magnetic field [J]. Journal of Crystal Growth, 1996, 158(4): 471-479.
[17]
Li K, Hu W R. Magnetic field design for floating zone crystal growth [J]. Journal of Crystal Growth, 2001, 230(1): 125-134.
[18]
Li K, Hu W R. Numerical simulation of magnetic field design for damping thermocapillary convection in a floating half-zone [J]. Journal of Crystal Growth, 2001, 222(3): 677-684.
[19]
Chen C B, Zeng Z, Mizuseki H, et al. Thermocapillary convection of liquid bridge under axisymmetric magnetic fields [J]. Materials Transactions, 2008, 49(11): 2566- 2571.