全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2012 

三自由度偏心索风致振动稳定性分析

DOI: 10.6052/j.issn.1000-4750.2010.11.0803, PP. 14-21

Keywords: 偏心索,风荷载,耦合振动,Hopf,分岔,稳定域

Full-Text   Cite this paper   Add to My Lib

Abstract:

索结构在表面覆冰后在横截面上引起偏心,在风荷载作用下面内、面外两个横向振动与扭转振动会耦合在一起,动力学状态较为复杂.该文建立了悬索风致振动的三维耦合振动模型,将风荷载表示为攻角的非线性函数,通过Hamilton原理导出动力学方程.采用Galerkin法将控制方程离散化,根据Routh-Hurwitz判据得到索平衡构形在参数空间内的稳定域,确定了发生Hopf分岔的临界风速,并且用数值解验证了稳定性条件.在给定的Hopf分岔设计点附近,采用近似解析方法确定了稳定域的边界形状,节省了一定的计算工作量.

References

[1]  Den Hartog J P. Transmission line vibration due to sleet[J]. Transactions of the American Institute of ElectricalEngineers, 1932, 51(4): 1074-1086.
[2]  Blevins R D, Iwan W D. The galloping response of atwo-degree-of-freedom system [J]. ASME Journal ofApplied Mechanics, 1974, 41: 1113-1118.
[3]  Desai Y M, Popplewell N, Shah A H, Chan J K. Staticand dynamic behaviour of mechanics componentsassociated with electrical transmission lines-Ⅲ: Parta-theoretical perspective [J]. Shock and Vibration Digest,1989, 21: 3-8.
[4]  Rao G V, Iyengar R. Internal resonance and non-linearresponse of a cable under periodic excitation [J]. Journalof Sound and Vibration, 1991, 149: 25-41.
[5]  Nayfeh A H, Arafat H N. Multimode interactions insuspended cable [J]. Journal of Vibration and Control,2002, 8: 337-387.
[6]  Srinil N, Rega G, Chucheepsakul S. Three-dimensionalnon-linear coupling and dynamic tension in thelarge-amplitude free vibrations of arbitrarily saggedcable [J]. Journal of Sound and Vibration, 2004, 269:823-852.
[7]  顾明, 马文勇, 全涌, 黄鹏. 两种典型覆冰导线气动力特性及稳定性分析[J]. 同济大学学报(自然科学版),2009, 37(10): 1328-1332.Gu Ming, Ma Wenyong, Quan Yong, Huang Peng.Aerodynamic force characteristics and stabilities of twotypical iced conductors [J]. Journal of Tongji University(Natural Science), 2009, 37(10): 1328 - 1332. (inChinese)
[8]  马文勇, 顾明, 全涌, 黄鹏. 覆冰导线任意方向驰振分析方法[J]. 同济大学学报(自然科学版), 2010, 38(1):130-134.Ma Wenyong, Gu Ming, Quan Yong, Huang Peng.Analysis method of galloping in arbitrary directions oficed conductors [J]. Journal of Tongji University(Natural Science), 2010, 38(1): 130-134. (in Chinese)
[9]  Arafat H N, Nayfeh A H. Non-linear responses ofsuspended cables to primary resonance excitations [J].Journal of Sound and Vibration, 2003, 266: 325-354.
[10]  Benedettini F, Rega G, Alaggio R. Non-linearoscillations of a four-degree-of-freedom model of asuspended cable under multiple internal resonanceconditions [J]. Journal of Sound and Vibration, 1995,182(5): 775-798.
[11]  Seyranian A P, Mailybaev A A. Multiparameter stabilitytheory with mechanical applications [M]. Singapore:World Scientific Publishing, 2003.
[12]  Berlioz A, Lamarque C H. Nonlinear vibration of ainclined cable [J]. Journal of Vibration and Acoustics,2005, 127: 315-323.
[13]  Yu P, Popplewell N, Shah A H. A geometrical approachassessing instability trends for galloping [J]. Journal ofApplied Mechanics, 1991, 58: 784-791.
[14]  Yu P, Popplewell N, Shah A H. Inertially coupledgalloping of iced conductors [J]. Journal of Sound andVibration, 1992, 59: 140-145.
[15]  Desai Y M, Yu P, Popplewell N, Shah A H. Finite element modeling of transmission line galloping [J].Computers and Structures, 1995, 57(3): 407-420.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133