全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2012 

考虑混凝土材料变异性的超大型冷却塔随机屈曲承载力分析

DOI: 10.6052/j.issn.1000-4750.2010.11.0853, PP. 208-212

Keywords: 混凝土,冷却塔,屈曲,概率密度演化,可靠度,随机性

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于屈曲本征方程的形式解推导出随机屈曲本征值满足的概率密度演化方程.取混凝土弹性模量服从正态分布及对数正态分布,分析了超大型冷却塔随机屈曲承载力的概率密度函数、均值、标准差及可靠度.结果表明:正态分布假定时随机屈曲承载力的均值与不考虑随机性的屈曲承载力十分接近,其变异性与混凝土弹性模量的变异性相似.而对数正态分布假定时,一阶屈曲本征值偏离了正态分布,均值及变异性增大,但可靠度降低.规范关于冷却塔整体稳定安全系数的规定偏于保守.

References

[1]  李杰, 陈建兵. 随机结构非线性动力反应的概率密度 演化分析[J]. 力学学报, 2003, 35(6): 716-722. Li Jie, Chen Jianbing. The probability density evolution method for analysis of dynamic nonlinear response of stochastic structures [J]. Acta Mechanica Sinica, 2003, 35(6): 716-722. (in Chinese)
[2]  陈建兵, 李杰. 非线性随机结构动力可靠度的密度演 化方法[J]. 力学学报, 2004, 36(2): 196-201. Chen Jianbing, Li Jie. The probability density evolution method for dynamic reliability assessment of nonlinear stochastic structures [J]. Acta Mechanica Sinica, 2004, 36(2): 196-201. (in Chinese)
[3]  Li J, Chen J B. The principle of preservation of probability and the generalized density evolution equation [J]. Structural Safety, 2008, 30: 65-77.
[4]  陈建兵, 李杰. 随机结构动力可靠度分析的极值概率 密度方法[J]. 地震工程与工程振动, 2004, 24(6): 39- 44. Chen Jianbing, Li Jie. The extreme value probability density function based method for dynamic reliability assessment of stochastic structures [J]. Earthquake Engineering and Engineering Vibration, 2004, 24(6): 39-44. (in Chinese)
[5]  Li J, Chen J B. The probability density evolution method for dynamic response analysis of non-linear stochastic structures [J]. International Journal for Numerical Methods in Engineering, 2006, 65: 882-903.
[6]  Dassault Systemes Inc. ABAQUS User Manual [DK]. 2002.
[7]  Melchers R E. Structural reliability analysis and prediction [M]. Chichester, UK: Ellis Horwood Limited, 1987: 286-287.
[8]  Busch D, Harte R, Niemann H. Study of a proposed 200m high natural draught cooling tower at power plant Frimmersdorf, Germany [J]. Engineering Structures, 1998, 20(10): 920-927.
[9]  DL/T 5339-2006, 火力发电厂水工设计规范[S]. 北京: 中国电力出版社, 2006. DL/T 5339-2006, Code for hydraulic design of fossil fuel power plants [S]. Beijing: China Electric Power Press, 2006. (in Chinese)
[10]  Liao W, Lu W D, Liu R H. Effect of soil-structure interaction on the reliability of hyperbolic cooling towers [J]. Structural Engineering and Mechanics, 1999, 7(2): 217-224.
[11]  Choi C K, Noh H C. Stochastic analysis of shape imperfection in RC cooling tower shells [J]. Journal of Structural Engineering, 2000, 126(3): 417-423.
[12]  廖汶, 卢文达, 刘人怀. 双曲冷却塔结构非线性有限 元可靠度分析[J]. 工程力学, 1999, 16(1): 49-55. Liao Wen, Lu Wenda, Liu Renhuai. Finite element reliability analysis of hyperbolic cooling towers [J]. Engineering Mechanics, 1999, 16(1): 49 - 55. (in Chinese) 浏览
[13]  许林汕, 赵林, 葛耀君. 超大型冷却塔随机风振响应 分析[J]. 振动与冲击, 2009, 28(4): 180-184. Xu Linshan, Zhao Lin, Ge Yaojun. Wind-excited stochastic responses of super large cooling towers [J]. Journal of Vibration and Shock, 2009, 28(4): 180-184. (in Chinese)
[14]  陈铁云, 沈惠申. 结构的屈曲[M]. 上海: 上海科学技 术出版社, 1993: 15-16. Chen Tieyun, Shen Huishen. Structural buckling [M]. Shanghai: Shanghai Scientific and Technological Literature Press, 1993: 15-16. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133